Aplikasi Prediksi Produksi Cabai dengan Algoritma C.45 untuk Dinas Pertanian Provinsi Aceh Berbasis Web
Main Article Content
Abstract
Article Summary
This research develops a chili production prediction application using the C.45 algorithm for the Aceh Province Agriculture Service. Weather data and chili prices from 2022-2023 are used to build a prediction model. After going through the data selection, preprocessing, and transformation stages, the C.45 algorithm model was successfully built and tested with new data. The results show a prediction accuracy of 84.03%. Furthermore, this model is implemented in the form of a web application which includes various features such as public pages, calculation of prediction results, graphs, and admin pages. Research shows that the use of the C.45 algorithm and this application has the potential to support agricultural decision making and planning in Aceh. Suggestions for further research include adding additional variables such as soil quality and socio-economic factors, as well as exploring remote sensing technology and other machine learning methods to increase prediction accuracy. Evaluation of the impact of using the application is also recommended to measure its effectiveness in supporting sustainable agriculture in Aceh
Downloads
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
References
Asistyasari, A., & Baidawi, T. (2017). Analisis Penerimaan Karyawan Posisi Field Collector Menggunakan Algoritma C4. 5 Pada Pt. Prismas Jamintara Jakarta. JITK (Jurnal Ilmu Pengetahuan dan Teknologi Komputer), 2(2), 1-6.
Erviyana, P. (2014). Faktor-faktor yang mempengaruhi produksi tanaman pangan jagung di Indonesia. JEJAK, 7(2).
Habib, A. (2015). Analisis faktor–faktor yang mempengaruhi produksi jagung. AGRIUM: Jurnal Ilmu Pertanian, 18(1).
Jollyta, D., Ramdhan, W., & Zarlis, M. (2020). Konsep Data Mining Dan Penerapan. Deepublish.
Kusrini, E. T. L., & Taufiq, E. (2009). Algoritma data mining. Yogyakarta: Andi Offset.
Nofriansyah, D., Kom, S., & Kom, M. (2015). Konsep data mining vs sistem pendukung keputusan. Deepublish.
Rahmayuni, I. (2014). Perbandingan performansi algoritma c4. 5 dan cart dalam klasifiksi data nilai mahasiswa prodi teknik komputer politeknik negeri padang. Jurnal Teknoif Teknik Informatika Institut Teknologi Padang, 2(1), 40-46.
Tomy, J. (2013). Faktor-faktor yang mempengaruhi produksi usahatani jagung Di Kecamatan Sindue Kabupaten Donggala. Agroland: Jurnal Ilmu-ilmu Pertanian, 20(1), 61-66.
Widayu, H., Nasution, S. D., Silalahi, N., & Mesran, M. (2017). data mining untuk memprediksi jenis transaksi nasabah pada koperasi simpan pinjam dengan algoritma C4. 5. Jurnal Media Informatika Budidarma, 1(2).