Smart Agriculture untuk Mewujudkan Ketahanan Pangan Berbasis Lora di Desa Kalipadang-Benjeng Gresik
Main Article Content
Abstract
Article Summary
Increasing agricultural production is a top priority in agricultural development. There are many agricultural problems to be managed. One way to increase rice production is to pay attention to irrigation conditions. In addition to irrigation, rising temperatures also affect the process of flowering and grain filling. At high temperatures, grain because of rice agricultural production will calcify, resulting in a decrease in grain quantity and grain mass. Temperature spikes can also reduce the viability and size of the seeds when they reach the ripe stage. Apart from water and air, farmers also need to pay attention to soil pH and humidity. Many farmers do not yet have accurate indicators to determine soil quality, most farmers only use estimates, the application of the estimation method causes the quality of the soil in paddy fields to be infertile. To overcome this problem, a tool is made to predict the condition of agricultural land by taking data on temperature, humidity, air pressure, soil pH, soil moisture, and water flow rate. The data is then sent to a database to be displayed on a web server, so that farmers can monitor land conditions. It is expected that the parameter results obtained can be used as a preventive measure for farmers when conditions occur that can reduce rice productivity. That way, the condition of the land can be maintained so that crop failure can be minimized. This tool will be implemented in one of the rice fields of the residents of Kalipadang-Benjeng-Gresik Village. Based on data taken using an NPK sensor, wet soil has an average NPK content of 29.3 (Nitrogen); 41 (Phosphorus); 82 (Potassium). Moist soil has an NPK level of 28 (Nitrogen); 40 (Phosphorus); 82 (Potassium), and dry soil has an NPK level of 27.5 (Nitrogen); 39.7 (Phosphorus); 79.1 (Potassium). It can be said that soil moisture is directly proportional to NPK levels.
Downloads
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License (CC-BY 4.0) that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.
References
B. CANDRAKANTA. (2021). Pengaruh Leverage, Profitabilitas, Intensitas Modal dan Corporate Governance Terhadap Penghindaran Pajak Pada Perusahaan Pertambangan dan Pertanian Yang Terdaftar Di Bursa Efek Indonesia, 7, 6.
Badan Ketahanan Pangan Dan Penyuluh Pertanian Aceh Bekerja Sama Dengan Balai Pengkajian Teknologi Pertanian Nad, Budidaya Tanaman Padi. (2009).
Balai Besar Litbang Sumber Daya Lahan Pertanian. (2017). Pertanian Indonesia Masuk Peringkat 25 Besar Dunia. Tersedia: https://bbsdlp.litbang.pertanian.go.id/ind/index.php?option=com_content&view=article&id=656:pertanian-indonesiamasukperingkat-25-besar-dunia1&catid=129&Itemid=305. Diakses pada 27 Oktober 2021.
Bosch Sensortec. BME280. Tersedia: [https://www.boschsensortec.com/products/environmental-sensors/humidity-sensors-bme280/](https://www.boschsensortec.com/products/environmental-sensors/humidity-sensors- bme280/). Diakses pada 3 Januari 2022.
D. Amandasari and E. Noersasongko. Sistem Informasi Penjualan Online Obat Pertanian pada UD. Riszki Abadi Pati. Universitas Dian Nusantoro.
D. F. Putra and S. Stefanus. (2019). Kajian Literatur –Penggunaan Sensor Waterflow Pada proses Pencampuran Cairan dalam Industri. Ultima Computing: Jurnal Sistem Komputer, 11(1), 20–23.
D. K. Wahyudianto, G. S. Rahmat, M. Masrur, R. I. Permana, and L. Abidin. (2013). Perancangan Alat Bantu Indikator Kualitas Tanah Dengan Parameter Resistivitas Tanah Dan Ph Tanah Untuk Tanaman Padi. Pekan Ilmiah Mahasiswa Nasional Program Kreativitas Mahasiswa - Karsa Cipta.
D. Sari. (2021). Prototype Alat Monitoring Suhu, Kelembapan dan Kecepatan Angin Untuk Smart Farming Menggunakan Komunikasi LoRa dengan Daya Listrik Menggunakan Panel Surya. Kilat, 10(2).
DFRobot. PH_meter_SKU SEN0161_. Tersedia: [https://wiki.dfrobot.com/PH_meter_SKU SEN0161_](https://wiki.dfrobot.com/PH_meter_SKU SEN0161_). Diakses pada 6 Januari 2022.
E. Prima (Ed.). (2021). Ciptakan aplikasi Pembaca Cuaca Untuk Petani, DosenUGM: Perkecil gagal panen. Tempo. Tersedia: [https://tekno.tempo.co/read/1454413/ciptakan-aplikasi-pembaca- cuaca-untuk-petanidosen-ugm-perkecil-gagal-panen](https://tekno.tempo.co/read/1454413/ciptakan-aplikasi-pembaca- cuaca-untuk-petanidosen-ugm-perkecil-gagal-panen). Diakses pada 11 Januari 2022.
G. Bucci, M. Faccio and C. Landi. (1997). The implementation of a smart sensor based on a piece-linear A/D converter. IEEE Instrumentation and Measurement Technology Conference Sensing, Processing, Networking. IMTC Proceedings, 1173-1177 vol.2. doi: 10.1109/IMTC.1997.612385.
G. H. Prathama, D. Andaresta, and K. Darmaastawan. (2021). Instalasi framework IOT berbasis platform thingsboard di ubuntu server. TIERS Information Technology Journal, 2(2), 1–9.
H. A. Nugraha and M. Chistianti J. (2013). Sistem Informasi Hasil Pertanian Lembaga Pusat Pelayanan dan Konsultasi Agrabisnis. KNSI17, STMIK Bumigora Mataram, 14-16 Feb.
H. S. Lestari. (2020). Pertanian Cerdas Sebagai Upaya Indonesia Mandiri Pangan. AGRITA (AGri), 2(1), 55. doi: 10.35194/agri.v2i1.983.
H. Yang, Y. Qin, G. Feng, and H. Ci. (2013). Online Monitoring of Geological CO2 Storage and Leakage Based on Wireless Sensor Networks. IEEE Sensors Journal, 13(2), 556-562. doi: 10.1109/JSEN.2012.2223210.
Hafeez, S., & Hasnu, S. (2010). Customer satisfaction for cellular phone in Pakistan: A case study of Mobilink. Business and Economics Research Journal, 1(3), 35-44.
Kusbiono Wisnu Pambudi, Jusak, Pauladie Susanto. (2014). Rancang Bangun Wireless Sensor Network untuk Monitoring Suhu dan Kelembaban pada Lahan Tanaman Jarak. Journal of Control and Network Systems, 3(2), 09-17.
M. B. R. Khamid, A. Junaedi, I. Lubis, dan Y. Yamamoto. (2019). Respon Pertumbuhan dan Hasil Padi (Oryza sativa L.) terhadap Cekaman Suhu Tinggi. J. Agron. Indonesia, 47(2), 119-125.
Maier, A. Sharp, and Y. Vagapov. (2017). Comparative analysis and practical implementation of the ESP32 microcontroller module for the internet of things. 2017 Internet Technologies and Applications (ITA), 143-148. doi: 10.1109/ITECHA.2017.8101926.
Prabowo A. Wiyono J. (2006). Pengelolaan Sistem Irigasi Mikro Untuk Tanaman Hortikultura dan Palawija. J. Enj. Pertan., IV(2).
R. A. Light. (2017). Mosquitto: Server and client implementation of the MQTT protocol. The Journal of Open Source Software, 2(13), 265.
S. A. Jaya. (2021). Analisis Umur Pakai Baterai Lithium Iron Phosphate (LifePO4) Berdasarkan Tingkat Dod dan Variasi Charge/Discharge Daya Baterai. Antares. Tersedia: https://antares.id/id/docs.html.
Sumarudin, W. Putra, E. Ismantohadi, S. Supardi, and M. Qomarrudin. (2019). SISTEM MONITORING TANAMAN HORTIKULTURA PERTANIAN DI KABUPATEN INDRAMAYU BERBASIS INTERNET OF THINGS. JATI, 9(1), 45-54.
T. M. Lubis. (2019). FPLANT: SISTEM MONITORING PENGENDALIAN PENGAIRAN DAN KONSULTASI BUDIDAYA PERTANIAN BERBASIS INTERNET OF THINGS (IOT). Universitas Gadjah Mada.
Techship. AcSIP S76GXB Developer Kit. Tersedia: https://techship.com/products/acsip-s76gxb-developer-kit. Diakses pada 8 Januari 2022.