IMPLEMENTASI DATA MINING DALAM PREDIKSI TARGET PRODUKSI PADA PROSES KERJA MESIN MOLDING MENGGUNAKAN ALGORITMA LINEAR REGRESSION (STUDI KASUS : PT. AIM KARAWANG)
Main Article Content
Abstract
Article Summary
Production is a process activity from input to produce an output. In the process of working good production will produce good quality products and in large quantities, this is due to a lack of products that are wasted due to production defects (NG products). In the world of industrial production will run simultaneously with a target. A target is a measure of the number of achievements in a certain period of time. The company will make continuous improvements for the smooth running of production and the achievement of production targets. This is because the more products produced, the turnover obtained will also be higher. The purpose of this research is to optimize production targets in the molding machine work process at PT. AIM Karawang. Where the products produced are o rings and rubber products by processing the material in the form of rubber. The method used in this study is the data mining linear regression algorithm. The reason for using this algorithm is because it is the most suitable for the existing conditions, so the daily data report some time ago is used as a reference for determining future target achievement.
Downloads
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
References
PRIHANDARI, R. C. (2022). Data Mining: Konsep Dan Apikasi Menggunakan Rapidminer (Series: Supervised Learning Dan Unsupervised Learning).
Jollyta, D., Ramdhan, W., & Zarlis, M. (2020). Konsep Data Mining Dan Penerapan. Deepublish.
Koibur, M. E., Murdiyanto, A. W., Munawar, Z., Insany, G. P., Manurung, H. E., Karmana, D., ... & Sastradipraja, C. K. (2023). SAINS DATA: Strategi, Teknik, dan Model Analisis Data. Kaizen Media Publishing.
Safitri, R., Alfira, N., Tamitiadini, D., Dewi, W. W. A., & Febriani, N. (2021). Analisis Sentimen: Metode Alternatif Penelitian Big Data. Universitas Brawijaya Press.
Swastika, R., Mukodimah, S., Susanto, F., Muslihudin, M., & Adab, S. I. P. IMPLEMENTASI DATA MINING (Clastering, Association, Prediction, Estimation, Classification). Penerbit Adab.
Leung, C. K., Middleton, R., Pazdor, A. G., & Won, Y. (2018, August). Mining ‘following’patterns from big but sparsely distributed social network data. In 2018 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM) (pp. 916-919). IEEE. DOI: 10.1109/ASONAM.2018.8508660.
Masrur, A., Thakur, G., Sparks, K., Palumbo, R., & Peuquet, D. J. (2019, December). Co-location Pattern Mining of Geosocial Data to Characterize Urban Functional Spaces. In 2019 IEEE International Conference on Big Data (Big Data) (pp. 4099-4102). IEEE. DOI: 10.1109/BigData47090.2019.9006263.
Iryani, L. (2020). Penerapan Datamining Menentukan Minat Baca Mahasiswa Di Perpustakaan Universitas Bina Darma Palembang Menggunakan Metode Clustering. INTECOMS: Journal of Information Technology and Computer Science, 3(1), 82-89.
Zuhairoh, F., Aji, T. S., & Ardiana, M. (2019). RELEVANSI NILAI INKREMENTAL ARUS KAS OPERASI DAN LABA (EARNING AFTER TAX) TERHADAP HARGA SAHAM (Study Kasus di Perusahaan Manufaktur yang terdaftar di Bursa Efek Indonesia (BEI) periode 2015-2017). Jurnal Akademi Akuntansi (JAA), 2(2), 81-92. DOI: https://doi.org/10.22219/jaa.v2i2.9682.
Sidik, A. D. W. M., Kusumah, I. H., Suryana, A., Artiyasa, M., & Junfithrana, A. P. (2020). Gambaran Umum Metode Klasifikasi Data Mining. FIDELITY: Jurnal Teknik Elektro, 2(2), 34-38.
Br Simanjuntak, A. P., & Roza, D. (2021). HKSA Antikanker Turunan 4-Aminochalcon Terhadap HeLa Dengan Metode Semiempiris CNDO Dan Regresi Linear.
Putra, A. Y. H., & Pambudi, W. S. (2017). Sistem Kontrol Otomatis PH larutan nutrisi tanaman bayam pada hidroponik NFT (Nutrient Film Technique). Jurnal Mikrotek, 2(4).
Peng, Z., & Li, X. (2018, August). Application of a multi-factor linear regression model for stock portfolio optimization. In 2018 International Conference on Virtual Reality and Intelligent Systems (ICVRIS) (pp. 367-370). IEEE. DOI: 10.1109/ICVRIS.2018.00096.
Rahayu, W. I., Trigunawan, A., & Andarsyah, R. (2020). Regresi linier untuk prediksi jumlah penjualan terhadap jumlah permintaan. Kreatif.