Implementasi Algoritma Naïve Bayes dalam Memprediksi Tingkat Kelulusan Siswa pada Sertifikasi Mikrotik Certified Network Associate (MTCNA)
Main Article Content
Abstract
Article Summary
The development of technology has increased the importance of certification in computer networking, such as the MikroTik Certified Network Associate (MTCNA). This certification is crucial for students who want to validate their skills and enhance their career prospects. However, predicting student graduation rates for the MTCNA certification presents various challenges, such as prior knowledge, study habits, and the complexity of the exam content. These factors can significantly affect the accuracy of predictions regarding student graduation rates. This study aims to address these issues by implementing the Naïve Bayes algorithm to predict student graduation rates for the MTCNA certification. The Naïve Bayes algorithm, known for its simplicity and effectiveness in classification problems, is expected to provide a more accurate predictive model. This study uses historical data on student performance and other relevant attributes. The results show that the Naïve Bayes model has an adequate prediction accuracy, with an accuracy rate of 91.70%. These findings are expected to provide valuable insights for educators and students, thereby improving preparation strategies and success rates in the MTCNA certification exam.
Keywords
Article Keywords
Downloads
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License (CC-BY 4.0) that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.
Firmansyah, A., Ramadhani, F., & Fauzan, E. (2020). Sistem Pendukung Keputusan Penentuan Status Karyawan Menggunakan Metode Naïve Bayes. Jurnal Ilmiah Intech, 2(02), 458512.
Gunawan, M., Zarlis, M., & Roslina, R. (2021). Analisis Komparasi Algoritma Naïve Bayes dan K-Nearest Neighbor Untuk Memprediksi Kelulusan Mahasiswa Tepat Waktu. Jurnal Media Informatika Budidarma, 5(2), 513-523. DOI: http://dx.doi.org/10.30865/mib.v5i2.2925.
Hartatik, H. (2021). Optimasi model prediksi kelulusan mahasiswa menggunakan algoritma naive bayes. IJAI (Indonesian Journal of Applied Informatics), 5(1), 32-38. DOI: https://doi.org/10.20961/ijai.v5i1.44379.
Hidayat, W. N., Patmanthara, S., Elmunsyah, H., Asfani, K., Hidayati, N., Wakhidah, R., ... & Jember, P. N. (2023). Pelatihan Mikrotik Untuk Peningkatan Kompetensi Administrasi Jaringan Komputer Untuk Persiapan Sertifikasi MTCNA Bagi Guru Dan Siswa SMKN 10 Malang. Jurnal Abdimas Berdaya: Jurnal Pembelajaran, Pemberdayaan dan Pengabdian Masyarakat, 6(1).
Malau, F. R., & Mulyana, D. I. (2022). Classification of Edelweiss Flowers Using Data Augmentation and Linear Discriminant Analysis Methods. Journal of Applied Engineering and Technological Science (JAETS), 4(1), 139-148. DOI: https://doi.org/10.37385/jaets.v4i1.960.
Nalatissifa, H., Gata, W., Diantika, S., & Nisa, K. (2021). Perbandingan Kinerja Algoritma Klasifikasi Naive Bayes, Support Vector Machine (SVM), dan Random Forest untuk Prediksi Ketidakhadiran di Tempat Kerja. Jurnal Informatika Universitas Pamulang, 5(4), 578-584.
Poerwandono, E., & Perwitosari, F. J. (2023). Penerapan Data Mining Untuk Penilaian Kinerja Karya Di PT Riksa Dinar Djaya Menggunakan Metode Naive Bayes Classification. Jurnal Sains dan Teknologi, 5(1), 336-340.
Purnama, I., Bangun, B., Lubis, R. R. H., & Sakinah, S. (2022). Pelatihan Mikrotik Untuk Peningkatan Kompetensi Administrasi Jaringan Komputer untuk Persiapan Sertifikasi MTCNA Bagi Siswa SMKS Siti Banun. Jurnal Pengabdian Masyarakat Gemilang (JPMG), 2(4), 92-95. DOI: https://doi.org/10.58369/jpmg.v2i4.145.
Putri, A. M. N., & Octaviano, A. (2023). Sistem Pendukung Keputusan Kenaikan Jabatan Menggunakan Metode Naive Bayes: Studi Kasus: PT Buana Mulia Indonesia. LOGIC: Jurnal Ilmu Komputer dan Pendidikan, 1(6), 1514-1521.
Rifai, M. F., Jatnika, H., & Valentino, B. (2019). Penerapan Algoritma Naïve Bayes Pada Sistem Prediksi Tingkat Kelulusan Peserta Sertifikasi Microsoft Office Specialist (MOS). DOI: https://doi.org/10.33322/petir.v12i2.471.
Saputro, I. W., & Sari, B. W. (2020). Uji Performa Algoritma Naïve Bayes untuk Prediksi Masa Studi Mahasiswa. Creative Information Technology Journal, 6(1), 1-11. DOI: https://doi.org/10.24076/citec.2019v6i1.178.
Senika, A., Rasiban, R., & Iskandar, D. (2022). Implementasi Metode Naïve Bayes Dalam Penilaian Kinerja Sales Marketing Pada PT. Pachira Distrinusa. Jurnal Media Informatika Budidarma, 6(1), 701-709. DOI: http://dx.doi.org/10.30865/mib.v6i1.3331.
Setiawan, K. M., Wahyuni, F. S., & Faisol, A. (2021). Perbandingan Algoritma C4. 5 Dan Danive Bayes Untuk Menentukan Karyawan Berprestasi. JATI (Jurnal Mahasiswa Teknik Informatika), 5(1), 235-245. DOI: https://doi.org/10.36040/jati.v5i1.3311.
Setiyani, L., Wahidin, M., Awaludin, D., & Purwani, S. (2020). Analisis Prediksi Kelulusan Mahasiswa Tepat Waktu Menggunakan Metode Data Mining Naïve Bayes: Systematic Review. Faktor Exacta, 13(1), 35-43.
Sudrajat, A. (2022). Penerapan Metode Naïve Bayes Untuk Menentukan Penilaian Kinerja Karyawan PT. Sinergi Guna Solusindo. OKTAL: Jurnal Ilmu Komputer dan Sains, 1(10), 1596-1606.
Yulianti, W., Wiyanto, W., & Nurhidayanti, N. (2023). APPLICATION OF DATA MINING USING NAIVE BAYES ALGORITHM FOR CLASSIFICATION OF EMPLOYEE CONTRACT EXTENSION AT PT TORINI JAYA ABADI. Jurnal Informatika Teknologi dan Sains (Jinteks), 5(3), 516-524. DOI: https://doi.org/10.51401/jinteks.v5i3.3348.
Zeniarja, J., Salam, A., & Ma'ruf, F. A. (2022). Seleksi Fitur dan Perbandingan Algoritma Klasifikasi untuk Prediksi Kelulusan Mahasiswa. Jurnal Rekayasa Elektrika, 18(2). DOI: https://doi.org/10.17529/jre.v18i2.24047.