Analisis Sentimen Naturalisasi Tim Nasional Indonesia U-23 di Era Shin Tae-yong Menggunakan Algoritma Naïve Bayes dan K-Nearest Neighbors
Main Article Content
Abstract
Article Summary
In the Shin Tae-yong era, the naturalization of players has become a controversial topic within the Indonesian U-23 national football team. This research aims to analyze public sentiment related to the naturalization of players in the team using two classification algorithms, namely Naive Bayes and K-Nearest Neighbor. Sentiment data is obtained from news sources, social media, and online discussion forums related to matches and team management decisions. First, data processing is carried out, including text cleaning, tokenization, and word weighting. Next, Naive Bayes and KNN models are trained using the processed dataset. The results of the sentiment analysis will provide valuable insight into the public's perception of the naturalization of players in the Indonesian U-23 national team under the control of Shin Tae-yong, as well as a comparison of the effectiveness between the Naive Bayes and KNN algorithms in sentiment classification. It is hoped that this research will provide a more in-depth view of the dynamics within the Indonesian national football team and its contribution to Indonesian football as a whole
Keywords
Article Keywords
Downloads
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License (CC-BY 4.0) that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.
Asro’i, A., & Februariyanti, H. (2022). Analisis sentimen pengguna Twitter terhadap perpanjangan PPKM menggunakan metode K-Nearest Neighbor. Jurnal Khatulistiwa Informatika, 10(1), 17–24. https://doi.org/10.31294/jki.v10i1.12624
Deviyanto, A., & Wahyudi, M. D. R. (2018). Penerapan analisis sentimen pada pengguna Twitter menggunakan metode K-Nearest Neighbor. JISKA (Jurnal Informatika Sunan Kalijaga), 3(1), 1–10. https://doi.org/10.14421/jiska.2018.31-01
Ernawati, S., & Wati, R. (2018). Penerapan algoritma K-Nearest Neighbors pada analisis sentimen review agen travel. Jurnal Khatulistiwa Informatika, 6(1), 64–69.
Fauzi, M. A., Mentari, N. D., & Muflikhah, L. (2018). Analisis sentimen kurikulum 2013 pada sosial media Twitter menggunakan metode K-Nearest Neighbor dan feature selection. Query Expansion Ranking Optimasi Sisa Bahan Baku Pada Industri Mebel Menggunakan Algoritma Genetika View Project Human Detection and Tra, 2(8), 2739–2743. https://www.researchgate.net/publication/322959504
Fikri, M. I., Sabrila, T. S., & Azhar, Y. (2020). Perbandingan metode Naïve Bayes dan Support Vector Machine pada analisis sentimen Twitter. Smatika Jurnal, 10(02), 71–76. https://doi.org/10.32664/smatika.v10i02.455
Mas Pintoko, B., & Muslim, K. (2018). Analisis sentimen jasa transportasi online pada Twitter menggunakan metode Naïve Bayes classifier. E-Proceeding of Engineering, 5(3), 8121–8130.
Muttaqin, M. N., & Kharisudin, I. (2021). Analisis sentimen pada ulasan aplikasi Gojek menggunakan metode Support Vector Machine dan K-Nearest Neighbor. UNNES Journal of Mathematics, 10(2), 22–27. http://journal.unnes.ac.id/sju/index.php/ujm
Nugroho, D. G., Chrisnanto, Y. H., & Wahana, A. (2015). Analisis sentimen pada jasa ojek online. Jurnal, 156–161.
Nurhuda, F., Widya Sihwi, S., & Doewes, A. (2016). Analisis sentimen masyarakat terhadap calon presiden Indonesia 2014 berdasarkan opini dari Twitter menggunakan metode Naive Bayes classifier. Jurnal Teknologi & Informasi ITSmart, 2(2), 35. https://doi.org/10.20961/its.v2i2.630
Prabowo, W. A., & Wiguna, C. (2021). Sistem informasi UMKM bengkel berbasis web menggunakan metode SCRUM. Jurnal Media Informatika Budidarma, 5(1), 149. https://doi.org/10.30865/mib.v5i1.2604
Pratama, A. E., Ariesta, A., & Gata, G. (2022). Analisis sentimen masyarakat terhadap Tim Nasional Indonesia pada Piala AFF 2020 menggunakan algoritma K-Nearest Neighbors. Jurnal TICOM: Technology of Information and Communication, 10(3), 187–196. https://jurnal-ticom.jakarta.aptikom.org/index.php/Ticom/article/view/33/47
Salam, A., Zeniarja, J., & Khasanah, R. S. U. (2018). Analisis sentimen data komentar sosial media Facebook dengan K-Nearest Neighbor (Studi kasus pada akun jasa ekspedisi barang J&T Express Indonesia). Prosiding SINTAK, 480–486.
Salim, S. S., & Mayary, J. (2020). Analisis sentimen pengguna Twitter terhadap dompet elektronik dengan metode Lexicon Based dan K-Nearest Neighbor. Jurnal Ilmiah Informatika Komputer, 25(1), 1–17. https://doi.org/10.35760/ik.2020.v25i1.2411
Sari, P. K., & Suryono, R. R. (2024). Komparasi algoritma Support Vector Machine dan Random Forest untuk analisis sentimen metaverse. Jurnal Mnemonic, 7(1), 31–39. https://doi.org/10.36040/mnemonic.v7i1.8977
Sari, R. (2020). Analisis sentimen pada review objek wisata Dunia Fantasi menggunakan algoritma K-Nearest Neighbor (K-NN). EVOLUSI: Jurnal Sains dan Manajemen, 8(1), 10–17. https://doi.org/10.31294/evolusi.v8i1.7371
Sembada, A. D., & Prasetyo, D. (2020). Aktualisasi Pancasila dalam sepak bola Indonesia. CIVICUS: Pendidikan-Penelitian-Pengabdian Pendidikan Pancasila dan Kewarganegaraan, 8(2), 1. https://doi.org/10.31764/civicus.v8i2.2410
Setiawan, H., & Zufria, I. (2023). Analisis sentimen pembatalan Indonesia sebagai tuan rumah Piala Dunia FIFA U-20 menggunakan Naïve Bayes. Jurnal Media Informatika Budidarma, 7(3), 1003–1012. https://doi.org/10.30865/mib.v7i3.6144
Sipayung, E. M., Maharani, H., & Zefanya, I. (2016). Perancangan sistem analisis sentimen komentar pelanggan menggunakan metode Naive Bayes classifier. Jurnal Sistem Informasi (JSI), 8(1), 2355–4614. http://ejournal.unsri.ac.id/index.php/jsi/index
Supriyanto, J., Alita, D., & Isnain, A. R. (2023). Penerapan algoritma K-Nearest Neighbor (K-NN) untuk analisis sentimen publik terhadap pembelajaran daring. Jurnal Informatika dan Rekayasa Perangkat Lunak, 4(1), 74–80. https://doi.org/10.33365/jatika.v4i1.2468.