Pengenalan Bahasa Isyarat Bahasa Indonesia Real-time Menggunakan Metode SP-Tree
Main Article Content
Abstract
Article Summary
Real-time Indonesian sign language recognition faces several challenges, the most prominent of which is the diversity of hand gestures and different expressions. Often, automated systems face difficulties in interpreting these highly variable gestures, which in turn results in decreased recognition accuracy and efficiency. To improve the performance of sign language recognition in this study, the SP-Tree method is proposed, which utilizes a spatial tree structure to group hand gesture data based on spatial and temporal features. This allows for a faster and more accurate sign language recognition process. It is expected that this technique can accelerate sign language recognition with a high level of accuracy and real-time response, which is very important for everyday applications. We used a public dataset covering various hand gestures in Indonesian sign language to test this technique. The results showed that the SP-Tree method had an accuracy of 92 percent, an F1 score of 0.90, and a feature loss of 0.08. Compared with existing conventional sign language recognition techniques, these figures show significant improvements. The results indicate that the SP-Tree method is an effective way to identify Indonesian signs in real-time. This method has the advantage of being able to interpret and group hand gestures more precisely and efficiently, improving the interaction between the user and the system. We hope that this research will help develop assistive technology for people with hearing disabilities. In the future, it will also provide opportunities to use this technique in other sign languages.
Keywords
Article Keywords
Downloads
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License (CC-BY 4.0) that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.
Borman, R. I., Priopradono, B., & Syah, A. R. (2017). Klasifikasi objek kode tangan pada pengenalan isyarat alphabet bahasa isyarat indonesia (bisindo). In Seminar Nasional Informatika dan Aplikasinya (SNIA) (pp. 1-4).
Gumelar, G., Hafiar, H., & Subekti, P. (2018). Bahasa isyarat indonesia sebagai budaya tuli melalui pemaknaan anggota gerakan untuk kesejahteraan tuna rungu. INFORMASI: Kajian Ilmu Komunikasi, 48(1), 65-78.
Huda, N., & Nurul Adha Oktarini Saputri, N. A. O. S. (2022). Aplikasi Pembelajaran Bahasa Isyarat Bagi Penyandang Disabilitas Tunarungu Berbasis Desktop. APLIKASI PEMBELAJARAN BAHASA ISYARAT BAGI PENYANDANG DISABILITAS TUNARUNGU BERBASIS DESKTOP.
Isma, S. T. (2018). Meneliti bahasa isyarat dalam perspektif variasi bahasa. Kongres Bahasa Indonesia, 1-14.
Mursita, R. A. (2015). Respon tunarungu terhadap penggunaan sistem bahasa isyarat indonesa (sibi) dan bahasa isyarat indonesia (bisindo) dalam komunikasi. Inklusi, 2(2), 221-232. https://doi.org/10.14421/ijds.2202.
Nurhayati, O. D., Eridani, D., & Tsalavin, M. H. (2022). Sistem isyarat bahasa Indonesia (Sibi) metode convolutional neural network sequential secara real time. J. Teknol. Inf. dan Ilmu Komput, 9(4), 819-828.
Pramono, I. M., Niswati, Z. I., & Agustina, A. (2024, January). MODEL PENERJEMAH BAHASA ISYARAT INDONESIA DENGAN METODE CONVOLUTIONAL NEURAL NETWORK (CNN). In Semnas Ristek (Seminar Nasional Riset dan Inovasi Teknologi) (Vol. 8, No. 01). https://doi.org/10.30998/semnasristek.v8i01.7124.
Putra, I. N. T. A., Kartini, K. S., Suyitno, Y. K., Sugiarta, I. M., & Puspita, N. K. E. (2023). Penerapan Library Tensorflow, Cvzone, dan Numpy pada Sistem Deteksi Bahasa Isyarat Secara Real Time. Krisnadana Journal, 2(3), 412-423. https://doi.org/10.58982/krisnadana.v2i3.335.
Sari, I., & Altiarika, E. (2023). Sistem pengembangan bahasa isyarat untuk berkomunikasi dengan penyandang disabilitas (tunarungu). Journal of Information Technology and society, 1(1), 20-25. https://doi.org/10.35438/jits.v1i1.21.
Sholawati, M., Auliasari, K., & Ariwibisono, F. X. (2022). Pengembangan Aplikasi Pengenalan Bahasa Isyarat Abjad Sibi Menggunakan Metode Convolutional Neural Network (Cnn). JATI (Jurnal Mahasiswa Teknik Informatika), 6(1), 134-144. https://doi.org/10.36040/jati.v6i1.4507.
Silpia, E., & Sari, R. M. (2023). Implementasi komunikasi bahasa isyarat anak tunarungu. JIIP-Jurnal Ilmiah Ilmu Pendidikan, 6(1), 529-535.