K-NEAREST NEIGHBOR MENGGUNAKAN FEATURE SELECTION BACKWARD ELIMINATION UNTUK PREDIKSI JUMLAH PERMINTAAN DARAH PADA PMMI KOTA GORONTALO
Main Article Content
Abstract
Article Summary
The importance of the availability of blood at PMI, it is expected that PMI always maintains the amount of blood supply to meet the need for blood transfusions. Prediction of blood supply is needed to overcome problems related to bloodstock supply at PMI Gorontalo. The application of predicting the number of blood requests with the K-Nearest Neighbor Algorithm can be done to overcome the existing problems. K-NN is a non-parametric algorithm that can be used for classification and regression. The last few decades have been used in prediction cases, but the K-NN algorithm is better if feature selection is applied in selecting features that are not relevant to the model, the feature selection used in this study is Backward Selection. This study aims to determine the error value in predicting the number of requests for blood at the PMI in Gorontalo City. Meanwhile, the purpose of this research is to find the error value of the K-Nearest Neighbor Algorithm and Feature Selection which can be used as a reference for PMI in making policies to make various efforts to maintainbloodstockk in the future.
Keywords
Article Keywords
Downloads
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License (CC-BY 4.0) that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.
Lasulika, M.E., 2019. Komparasi Naïve Bayes, Support Vector Machine Dan K-Nearest Neighbor Untuk Mengetahui Akurasi Tertinggi Pada Prediksi Kelancaran Pembayaran Tv Kabel. ILKOM Jurnal Ilmiah, 11(1), pp.11-16. DOI: https://doi.org/10.33096/ilkom.v11i1.408.11-16.
Lasulika, M.E., 2017. Prediksi Harga Komoditi Jagung Menggunakan K-Nn Dan Particle Swarm Optimazation Sebagai Fitur Seleksi. ILKOM Jurnal Ilmiah, 9(3), pp.233-238. DOI: https://doi.org/10.33096/ilkom.v9i3.148.233-238.
Bode, A., 2017. K-nearest neighbor dengan feature selection menggunakan backward elimination untuk prediksi harga komoditi kopi arabika. ILKOM Jurnal Ilmiah, 9(2), pp.188-195. https://doi.org/10.33096/ilkom.v9i2.139.188-195.
Rasyidi, M.A., 2017. Prediksi Harga Bahan Pokok Nasional Jangka Pendek Menggunakan ARIMA. Journal of Information Systems Engineering and Business Intelligence, 3(2), p.107. DOI: https://doi.org/10.20473/jisebi.3.2.107-112.
Sari, Y., 2017. Prediksi harga emas menggunakan metode neural network backpropagation algoritma conjugate gradient. Jurnal Eltikom, 1(2), pp. 64–70. DOI: https://doi.org/10.31961/eltikom.v1i2.21.
Sya’baniyah Pangesti, C.S. and Rismawan, T., Aplikasi Prediksi Harga Sembako Menggunakan Metode Box-Jenkins Berbasis Website. Coding Jurnal Komputer dan Aplikasi, 6(3), pp. 139-149. DOI: http://dx.doi.org/10.26418/coding.v6i3.29045.
Rahma, I.N. and Setiadi, T., 2014. Penerapan Data Mining Untuk Memprediksi Jumlah Penumpang Bus Trans Jogja Menggunakan Time Series Data. Jurnal Sarjana Teknik Informatika, 2(3), pp. 161–171. DOI: http://dx.doi.org/10.12928/jstie.v2i3.2886.
Yustanti, W., 2012. Algoritma K-Nearest Neighbour untuk Memprediksi Harga Jual Tanah. Jurnal Matematika, Statistika dan Komputasi, 9(1), pp.57-68. DOI: https://doi.org/10.20956/jmsk.v9i1.3399.
Pratiwi, R.W. and Nugroho, Y.S., 2016. Prediksi Rating Film Menggunakan Metode Naïve Bayes. DutaCom, 12(1), pp.91-108.
Nanja, M. and Purwanto, P., 2015. Metode k-nearest neighbor berbasis forward selection untuk prediksi harga komoditi lada. Pseudocode, 2(1), pp.53-64. DOI: https://doi.org/10.33369/pseudocode.2.1.53-64.
Drajana, I.C.R., 2017. Metode support vector machine dan forward selection prediksi pembayaran pembelian bahan baku kopra. ILKOM Jurnal Ilmiah, 9(2), pp.116-123. DOI: https://doi.org/10.33096/ilkom.v9i2.134.116-123.