ANALISIS KLASIFIKASI SENTIMEN PENGGUNA MEDIA SOSIAL TWITTER TERHADAP PENUNDAAN PEMILU PRESIDEN TAHUN 2024
Main Article Content
Abstract
Article Summary
The discourse of postponing the 2024 election and extending the term of office of the president has stimulated sentiment in some regions in Indonesia. The discourse has implications for the extension of the president's term of office which is considered unconstitutional. The issue of postponing the election is clearly not the aspiration of the people, but only the interests of political passion and lust among the rulers who want to perpetuate power so that it is considered to violate and insult the constitution which stipulates that elections are held every five years. This study aims to determine how to analyze the sentiment of postponement the 2024 election on comments from the Indonesian people on Twitter or called tweets. The number of comments that will be used in the study is 1826 consisting of 710 positive sentiments and 1116 negative sentiments. The research method used is the Cross-Industry Standard Process for Data Mining (CRISP-DM) method. With this method, the stages of research carried out are data collection, business understanding, data understanding, data preprocessing, data labeling, modeling, evaluation, and deployment. Based on the results obtained at the modeling stage, the tweet data that has been collected is then processed and analyzed for sentiment with a train/test split data model and k-fold cross validation using the Naive Bayes (NB) algorithm, Support Vector Machine (SVM), Deep Learning (DL) ), and Desicious Tree (DT) and a comparison of 80:20 for training and testing data, the highest accuracy value is obtained by using the train/test split data model using the Naive Bayes algorithm to produce an accuracy of 80,55%.
Keywords
Article Keywords
Downloads
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License (CC-BY 4.0) that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.
D. Nurita, 2022. Busyro Muqoddas Sebut Pengusul Tunda Pemilu 2024 Tak Punya Malu. URL: https://nasional.tempo.co/read/1571423/busyro-muqoddas-sebut-pengusul-tunda-pemilu-2024-tak-punya-malu
Amirulloh, 2022. Denny Indrayana: Usul Penundaan Pemilu 2024 Pelanggaran Konstitusi Berjamaah. URL: https://nasional.tempo.co/read/1564734/denny-indrayana-usul-penundaan-pemilu-2024-pelanggaran-konstitusi-berjamaah
D. Nurita, 2022. Pakar Hukum UGM Khawatirkan Dua Skenario yang Bisa Loloskan Penundaan Pemilu. URL: https://nasional.tempo.co/read/1571591/pakar-hukum-ugm-khawatirkan-dua-skenario-yang-bisa-loloskan-penundaan-pemilu
S. Juariya, 2022. Dampak yang Akan Terjadi Jika Pelaksanaan Pilkada Serentak Tahun 2024 Konten ini telah tayang di Kompasiana.com dengan judul “Dampak yang Akan Terjadi Jika Pelaksanaan Pilkada Serentak Tahun 2024”, Klik untuk baca: https://www.kompasiana.com/sitijuariya72. URL: https://www.kompasiana.com/sitijuariya7226/62a3340efca4e4528d13bd43/dampak-yang-akan-terjadi-jika-pelaksanaan-pilkada-serentak-tahun-2024
C. M. Annur, 2022. Pengguna Twitter Indonesia Masuk Daftar Terbanyak di Dunia, Urutan Berapa?. URL: https://databoks.katadata.co.id/datapublish/2022/03/23/pengguna-twitter-indonesia-masuk-daftar-terbanyak-di-dunia-urutan-berapa
Muhammad Fadhl, 2022. Analisa Sentimen Mengenai Pendidikan Tatap Muka pada Twitter Menggunakan Metode Naïve Bayes dan Support Vector Machine, Dr. Diss. Univ. Mercu Buana Jakarta.
Saputro, I.W. and Sari, B.W., 2020. Uji Performa Algoritma Naïve Bayes untuk Prediksi Masa Studi Mahasiswa. Creative Information Technology Journal, 6(1), pp.1-11. DOI: https://doi.org/10.24076/citec.2019v6i1.178.
Nida, E.A., 2020. Analisis Kinerja Algoritma Support Vector Machine (SVM) Guna Pengambilan Keputusan Beli/Jual Pada Saham PT Elnusa Tbk.(ELSA). Jurnal Transformatika, 17(2), pp.160-170. DOI: http://dx.doi.org/10.26623/transformatika.v17i2.1649.
Sari, R., 2020. Analisis sentimen pada review objek wisata dunia fantasi menggunakan algoritma K-Nearest Neighbor (k-nn). EVOLUSI: Jurnal Sains Dan Manajemen, 8(1). DOI: https://doi.org/10.31294/evolusi.v8i1.7371.
Harun, A. and Ananda, D.P., 2021. Analisa Sentimen Opini Publik Tentang Vaksinasi Covid-19 di Indonesia Menggunakan Naïve bayes dan Decission Tree: Analysis of Public Opinion Sentiment About Covid-19 Vaccination in Indonesia Using Naïve Bayes and Decission Tree. MALCOM: Indonesian Journal of Machine Learning and Computer Science, 1(1), pp.58-64. DOI: https://doi.org/10.57152/malcom.v1i1.63.
Sihombing, R.E., Rachmatin, D. and Dahlan, J.A., 2019. Program Aplikasi Bahasa R Untuk Pengelompokan Objek Menggunakan Metode K-Medoids Clustering. Jurnal EurekaMatika, 7(1), pp.58-79.
Ardika, R.B.P., Irawan, B. and Setianingsih, C., 2020. Analisis Sentimen Data Pada Bpjs Kesehatan Menggunakan Backpropagation Neural Network. eProceedings of Engineering, 7(2).
Yang, L., 2020. Wang and Sherratt, 2020 Yang Li, Li Y., Wang J., Sherratt RS. Sentiment analysis for E-commerce product reviews in Chinese based on sentiment lexicon and deep learning, IEEE Access, 8, pp.23522-23530. DOI: https://doi.org/10.1109/ACCESS.2020.2969854.
Pratiwi, A.R.D. and Setiawan, E.B., 2020. Implementation of rumor detection on twitter using the svm classification method. Jurnal RESTI (Rekayasa Sistem Dan Teknologi Informasi), 4(5), pp.782-789. DOI: https://doi.org/10.29207/resti.v4i5.2031.
Aletti, G., Crimaldi, I. and Saracco, F., 2021. A model for the Twitter sentiment curve. Plos one, 16(4), p.e0249634. DOI: 10.1371/journal.pone.0249634.
Chandani, V., Wahono, R.S. and Purwanto, P., 2015. Komparasi algoritma klasifikasi Machine Learning dan feature selection pada analisis sentimen review film. Journal of Intelligent Systems, 1(1), pp.56-60.
Putra, A.D.A. and Juanita, S., 2021. Analisis Sentimen pada Ulasan pengguna Aplikasi Bibit Dan Bareksa dengan Algoritma KNN. JATISI (Jurnal Teknik Informatika dan Sistem Informasi), 8(2), pp.636-646. DOI: 10.35957/jatisi.v8i2.962.
Harsono, M.L.K., Alkhalifi, Y. and Gata, W., 2020. Analisis Sentimen Stakeholder Atas Layanan HAIDJPB Pada Media Sosial Twitter Dengan Menggunakan Metode Support Vector Machine Dan Naï ve Bayes. Infoman's: Jurnal Ilmu-ilmu Manajemen dan Informatika, 14(1).
Melita, R., Amrizal, V., Suseno, H.B., Dirjam, T., Informatika, T. and Sains, F., 2018. Penerapan Metode Term Frequency Inverse Document Frequency (Tf-Idf) Dan Cosine Similarity Pada Sistem Temu Kembali Informasi Untuk Mengetahui Syarah Hadits Berbasis Web (Studi Kasus: Syarah Umdatil Ahkam). J. Tek. Inform, 11(2), pp.149-164.