Perbandingan Kinerja Model Pre-Trained CNN (VGG16, RESNET, dan INCEPTIONV3) untuk Aplikasi Pengenalan Wajah pada Sistem Absensi Karyawan

Main Article Content

Authors

Details of Authors

Muhammad Khatama Insani

Universitas Stikubank

Dwi Budi Santoso

Universitas Stikubank

Abstract

Article Summary

Keywords

Article Keywords

Downloads

Download data is not yet available.

Article Details

How to Cite
Insani, M. K., & Santoso, D. B. (2024). Perbandingan Kinerja Model Pre-Trained CNN (VGG16, RESNET, dan INCEPTIONV3) untuk Aplikasi Pengenalan Wajah pada Sistem Absensi Karyawan. Jurnal Indonesia : Manajemen Informatika Dan Komunikasi, 5(3), 2612-2622. https://doi.org/10.35870/jimik.v5i3.925
Section
Articles
Author Biographies

Muhammad Khatama Insani, Universitas Stikubank

Fakultas Teknologi Informasi dan Industri, Universitas Stikubank, Kota Semarang, Provinsi Jawa Tengah, Indonesia.

Dwi Budi Santoso, Universitas Stikubank

Fakultas Teknologi Informasi dan Industri, Universitas Stikubank, Kota Semarang, Provinsi Jawa Tengah, Indonesia.

References
Bimorogo, S. D., & Kusuma, G. P. (2020). A comparative study of pretrained convolutional neural network model to identify plant diseases on android mobile device. International Journal, 9(3).

Gwyn, T., Roy, K., & Atay, M. (2021). Face recognition using popular deep net architectures: A brief comparative study. Future Internet, 13(7), 164. DOI: https://doi.org/10.3390/fi13070164.

Hartiwi, Y., Rasywir, E., Pratama, Y., & Jusia, P. A. (2020). Sistem Manajemen Absensi dengan Fitur Pengenalan Wajah dan GPS Menggunakan YOLO pada Platform Android. Jurnal Media Informatika Budidarma, 4(4), 1235-1242. DOI: http://dx.doi.org/10.30865/mib.v4i4.2522.
He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 770-778).

Kamencay, P., Benco, M., Mizdos, T., & Radil, R. (2017). A new method for face recognition using convolutional neural network. Advances in Electrical and Electronic Engineering, 15(4), 663-672.

Kang, B. N., Kim, Y., & Kim, D. (2017). Deep convolutional neural network using triplets of faces, deep ensemble, and score-level fusion for face recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition workshops (pp. 109-116).

Ko, H., Chung, H., Kang, W. S., Kim, K. W., Shin, Y., Kang, S. J., ... & Lee, J. (2020). COVID-19 pneumonia diagnosis using a simple 2D deep learning framework with a single chest CT image: model development and validation. Journal of medical Internet research, 22(6), e19569.

Kumar, C. R., Saranya, N., Priyadharshini, M., & Gilchrist, D. (2023). Face recognition using CNN and siamese network. Measurement: Sensors, 27, 100800.

Lin, S., Chen, L., Chen, W., & Chang, B. (2024, January). Face Recognition via Thermal Imaging: A Comparative Study of Traditional and CNN-Based Approaches. In Proceedings of the 2024 8th International Conference on Machine Learning and Soft Computing (pp. 132-138). DOI: https://doi.org/10.1145/3647750.3647771.

Saragih, R. E., & To, Q. H. (2022). A survey of face recognition based on convolutional neural network. Indonesian Journal of Information Systems, 4(2).

Simonyan, K., & Zisserman, A. (2014). Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556. DOI: https://doi.org/10.48550/arXiv.1409.1556.

Sulistya, Y. I., Bangun, E. T. B., & Tyas, D. A. (2023). CNN Ensemble Learning Method for Transfer learning: A Review. ILKOM Jurnal Ilmiah, 15(1), 45-63.

Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., & Wojna, Z. (2016). Rethinking the inception architecture for computer vision. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 2818-2826).

Wirayasa, I. K. A., Santoso, H., & Indrajit, E. (2021). Comparison of Convolutional Neural Networks Model Using Different Optimizers for Image Classification. International Journal of Sciences: Basic and Applied Research (IJSBAR), 60(2), 116-126.

Yaman, M. A., Rattay, F., & Subasi, A. (2021). Comparison of bagging and boosting ensemble machine learning methods for face recognition. Procedia Computer Science, 194, 202-209.