Implementasi Data Mining Klasifikasi Gejala Penyakit TB Menggunakan Algoritma Naive Bayes pada Studi Kasus Puskesmas Pegangsaan Dua B
Main Article Content
Abstract
Article Summary
Tuberculosis (TB) is an infectious disease caused by Mycobacterium tuberculosis. The bacteria can enter the lungs, causing the patient to experience shortness of breath and chronic coughing. The infection process in TB progresses through three main stages: primary infection, latent infection, and active infection. During the primary infection stage, the bacteria enter the lungs through inhaled air. If the immune system successfully controls the bacteria, the infection becomes latent, where the bacteria remain inactive and cause no symptoms. However, if the immune system fails, the infection becomes active, and the bacteria attack healthy lung cells, leading to severe symptoms. Tuberculosis remains a major cause of global morbidity and mortality. According to the 2022 WHO report, Indonesia ranks second in the world with an estimated 969,000 TB cases, or 354 per 100,000 people, and a mortality rate of 144,000, or 52 per 100,000 people. This study aims to improve the accuracy of TB diagnosis through the application of the Naive Bayes algorithm, applied to patient data from the Pegangsaan Dua B Community Health Center. The dataset includes 1,527 training data and 1,029 testing data, covering attributes such as patient name, gender, age, identification number, registration date, address, diagnosis status, and diagnosis results. The results indicate that the Naive Bayes algorithm achieved an accuracy of 99.71%, showing its potential for early and accurate TB diagnosis prediction.
Keywords
Article Keywords
Downloads
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License (CC-BY 4.0) that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.
Halimah, H., Linda, D., & Klaralia, F. (2020). Penerapan Algoritma Naïve Bayes untuk Memprediksi Penyakit Malaria pada Puskesmas Hanura. TEKNIKA, 14(1), 57-63.
Harahap, F., Saragih, N. E., Siregar, E. T., & Sariangsah, H. (2021). Penerapan Data Mining Dengan Algoritma Naive Bayes Classifier Dalam Memprediksi Pembelian Cat. Jurnal Ilmiah Informatika, 9(01), 19-23. DOI: https://doi.org/10.33884/jif.v9i01.3702.
Hidayat, M. T., Suarna, N., & Rahaningsih, N. (2023). Implementasi Algoritma Naïve Bayes Untuk Prediksi Persediaan Barang Pt. Dilmoni Citra Mebel Indonesia. JATI (Jurnal Mahasiswa Teknik Informatika), 7(1), 693-699. DOI: https://doi.org/10.36040/jati.v7i1.6310.
Huda, A. S., Awangga, R. M., & Fathonah, R. N. S. (2020). Prediksi Penerimaan Pegawai Baru Dengan Metode Naive Bayes (Vol. 1). Kreatif.
Jefi, J., Hendri, H., Afni, N., Salim, A., & Maulana, Y. I. (2021). Penerapan Algoritma Naive Bayes Dalam Memprediksi Penyakit Lambung. JISICOM (Journal of Information System, Informatics and Computing), 5(2), 524-531. DOI: https://doi.org/10.52362/jisicom.v5i2.659.
Monowati, I. T., & Setyadi, R. (2023). Penerapan Algoritma Naïve Bayes Dalam Memprediksi Pengusulan Penghapusan Peralatan dan Mesin Kantor. Journal of Information System Research (JOSH), 4(2), 483-491. DOI: https://doi.org/10.47065/josh.v4i2.2674.
Novia, E. A., Rahayu, W. I., & Prianto, C. (2020). Sistem Perbandingan Algoritma K-Means dan Naive Bayes Untuk Memprediksi Prioritas Pembayaran Tagihan Rumah Sakit Berdasarkan Tingkat Kepentingan. Kreatif.
Pusadan, M. Y., Ghifari, A., & Anshori, Y. (2023). Implementasi Data Mining untuk Prediksi Status Proses Persalinan pada Ibu Hamil Menggunakan Algoritma Naive Bayes. Technomedia Journal, 8(1 Juni), 137-153. DOI: https://doi.org/10.33050/tmj.v8i1.1980.
Putra, R. F., Zebua, R. S. Y., Budiman, B., Rahayu, P. W., Bangsa, M. T. A., Zulfadhilah, M., ... & Andiyan, A. (2023). Data Mining: Algoritma dan Penerapannya. PT. Sonpedia Publishing Indonesia.
Rahayu, W. I., & Saputra, M. H. K. (2020). Penerapan Metode Naive Bayes dan Skala Likert Pada Aplikasi Prediksi Kelulusan Mahasiswa. Kreatif.
Rezekika, D. (2020). Penerapan Algoritma Naïve Bayes Untuk Memprediksi Penjualan Spare Part Sepeda Motor. Pelita Informatika: Informasi dan Informatika, 8(3), 326-329.
Ridwan, A. (2020). Penerapan Algoritma Naïve Bayes Untuk Klasifikasi Penyakit Diabetes Mellitus. J. SISKOM-KB (Sistem Komput. dan Kecerdasan Buatan), 4(1), 15-21. DOI: https://doi.org/10.47970/siskom-kb.v4i1.169.
Rifai, M. F., Jatnika, H., & Valentino, B. (2019). Penerapan Algoritma Naïve Bayes Pada Sistem Prediksi Tingkat Kelulusan Peserta Sertifikasi Microsoft Office Specialist (MOS). DOI: https://doi.org/10.33322/petir.v12i2.471.
Saputra, A. W., Purnamasari, A. I., & Ali, I. (2024). IMPLEMENTASI ALGORITMA NAÏVE BAYES UNTUK MEMPREDIKSI KUALITAS AIR YANG DAPAT DI KONSUMSI. JATI (Jurnal Mahasiswa Teknik Informatika), 8(1), 133-140. DOI: https://doi.org/10.36040/jati.v8i1.8292.
Simatupang, B., Pane, S. F., & Harani, N. H. (2020). Cara Cepat dan Mudah untuk Melakukan Recruitment Karyawan Perbankan Menggunakan Algoritma Naive Bayes. Kreatif.
Sinaga, S., Sembiring, R. W., & Sumarno, S. (2022). Penerapan Algoritma Naive Bayes untuk Klasifikasi Prediksi Penerimaan Siswa Baru. Journal of Machine Learning and Data Analytics, 1(1), 55-64.
Surahman, A., & Hayati, U. (2023). Implementasi Algoritma Naïve Bayes Untuk Prediksi Penerima Bantuan Sosial. JATI (Jurnal Mahasiswa Teknik Informatika), 7(1), 347-352. DOI: https://doi.org/10.36040/jati.v7i1.6302.
Utama, T. P., & Haibuan, M. S. (2023). Penerapan Algoritma Naïve Bayes dan Forward Selection Untuk Prediksi Penyakit Stroke. Jurnal Teknoinfo, 17(2), 351-357. DOI: https://doi.org/10.33365/jti.v17i2.2580.
Wibowo, G. W. N., & Manan, M. A. (2022). Penerapan Algoritma Naive Bayes Untuk Prediksi Heregistrasi Calon Mahasiswa Baru. JTINFO: Jurnal Teknik Informatika, 1(1), 1-10. DOI: https://doi.org/10.02220/jtinfo.v1i1.126.
Wijaya, K., Rahmanti, N., Kurnia, R., Ulyani, R., & Mufti, E. P. (2023). Implementasi Algoritma Naïve Bayes untuk Memprediksi Penjualan Lampu Pada Toko Satria. Innovative: Journal Of Social Science Research, 3(2), 9373-9387. DOI: https://doi.org/10.31004/innovative.v3i2.1330.
Zulfauzi, Z., & Alamsyah, M. N. (2020). Penerapan Algoritma Naive Bayes Untuk Prediksi Penerimaan Mahasiswa Baru Studi Kasus Universitas Bina Insan Fakultas Komputer. Jurnal Teknologi Informasi Mura, 12(2), 156-165. DOI https://doi.org/10.32767/jti.v12i02.1096.