Analisis Sentimen Respon Publik Terhadap Program Internet Gratis di Platform X Melalui Pendekatan Algoritma Naïve Bayes
Main Article Content
Abstract
Article Summary
The free internet program was launched in response to the public's need for affordable internet access. Digital transformation relies on four main pillars, including infrastructure, government, digital society, and the economy. In addition, connectivity is also an important component. Indonesia is one of the countries where many people are not connected to the internet. We Are Social reported that there are 63.51 million people throughout the country who have not been connected to the internet until early 2023. The number is the eighth largest globally. After the acceleration of ICT infrastructure development, there is a need for a free internet program initiated by the government or certain organizations that aims to provide wider and more equitable internet access, especially to students and the general public, especially in areas that have not yet received internet access. Although free internet programs are very beneficial, it is undeniable that there are a number of negative impacts that need to be considered. It is important to be aware of and overcome its negative impact. It is necessary to Sentiment Analysis of free internet programs to find out how much positive and negative responses there are in this program with the Naive Bayes algorithm approach so that the need for free internet programs can be realized.
Downloads
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License (CC-BY 4.0) that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.
References
Al Fachri, M. A., & Athiyah, U. (2023). Komparasi Model Analisis Sentimen Pada Twitter Terhadap Kemahalan Minyak Goreng dengan Metode Naive Bayes dan Support Vector Machine. Infotekmesin, 14(2), 194-199.
Alita, D., & Shodiqin, R. A. (2023). Sentimen Analisis Vaksin Covid-19 Menggunakan Naive Bayes Dan Support Vector Machine. Journal of Artificial Intelligence and Technology Information, 1(1), 1-12. DOI: https://doi.org/10.58602/jaiti.v1i1.20.
Anbari, M. Z., & Sugiantoro, B. (2023). Studi Komparasi Metode Analisis Sentimen Naïve Bayes, SVM, dan Logistic Regression Pada Piala Dunia 2022. Jurnal Media Informatika Budidarma, 7(2), 688-695. DOI: http://dx.doi.org/10.30865/mib.v7i2.5383.
Arischo, R. S., & Damayanti, D. (2024). Analisis Sentimen Pinjaman Online di Twitter dengan Metode Naive Bayes Classifier dan SVM. JURNAL MEDIA INFORMATIKA BUDIDARMA, 8(2), 1120-1130. DOI: http://dx.doi.org/10.30865/mib.v8i2.7406.
Effendi, L., & Syukmana, F. (2022). Analisa sentimen vaksinasi covid-19 dengan metode support vector machine dan naïve bayes berbasis teknik SMOTE.
Fikri, M. I., Sabrila, T. S., & Azhar, Y. (2020). Perbandingan metode naïve bayes dan support vector machine pada analisis sentimen twitter. SMATIKA Jurnal: STIKI Informatika Jurnal, 10(02), 71-76.
Handayanto, R. T., Herlawati, H., Atika, P. D., Khasanah, F. N., Yusuf, A. Y. P., & Septia, D. Y. (2021). Analisis Sentimen Pada Situs Google Review dengan Naïve Bayes dan Support Vector Machine. Jurnal Komtika (Komputasi dan Informatika), 5(2), 153-163. DOI: https://orcid.org/0000-0001-9433-3882.
Indriyani, F. A., Fauzi, A., & Faisal, S. (2023). Analisis sentimen aplikasi tiktok menggunakan algoritma naïve bayes dan support vector machine. TEKNOSAINS: Jurnal Sains, Teknologi dan Informatika, 10(2), 176-184. DOI: https://doi.org/10.37373/tekno.v10i2.419.
Kurniawan, I., Hananto, A. L., Hilabi, S. S., Hananto, A., Priyatna, B., & Rahman, A. Y. (2023). Perbandingan Algoritma Naive Bayes Dan SVM Dalam Sentimen Analisis Marketplace Pada Twitter. JATISI (Jurnal Teknik Informatika Dan Sistem Informasi), 10(1), 731-740. DOI: https://doi.org/10.35957/jatisi.v10i1.3582.
Kusmira, M. (2019). Analisis Sentimen Registrasi Ulang Kartu SIM Pada Twitter Menggunakan Algoritma SVM dan K-NN. Inti Nusa Mandiri, 14(1), 105-110.
Normawati, D., & Prayogi, S. A. (2021). Implementasi Naïve Bayes Classifier Dan Confusion Matrix Pada Analisis Sentimen Berbasis Teks Pada Twitter. J-SAKTI (Jurnal Sains Komputer dan Informatika), 5(2), 697-711. DOI: http://dx.doi.org/10.30645/j-sakti.v5i2.369.
Noviana, R., & Rasal, I. (2023). Penerapan Algoritma Naive Bayes Dan Svm Untuk Analisis Sentimen Boy Band Bts Pada Media Sosial Twitter. Jurnal Teknik dan Science, 2(2), 51-60. DOI: https://doi.org/10.56127/jts.v2i2.791.
Oktavia, D., Ramadahan, Y. R., & Minarto, M. (2023). Analisis Sentimen Terhadap Penerapan Sistem E-Tilang Pada Media Sosial Twitter Menggunakan Algoritma Support Vector Machine (SVM). KLIK: Kajian Ilmiah Informatika dan Komputer, 4(1), 407-417. DOI: https://doi.org/10.30865/klik.v4i1.1040.
Paryono, T., Arfani, M. R., Hananto, A., & Huda, B. (2023). Seleksi Penerimaan Bantuan Internet Gratis dengan Menggunakan Metode AHP. INTERNAL (Information System Journal), 6(1), 1-9. DOI: https://doi.org/10.32627/internal.v6i1.736.
Raharjo, R. A., Sunarya, I. M. G., & Divayana, D. G. H. (2022). Perbandingan Metode Naïve Bayes Classifier Dan Support Vector Machine Pada Kasus Analisis Sentimen Terhadap Data Vaksin Covid-19 Di Twitter. Elkom: Jurnal Elektronika dan Komputer, 15(2), 456-464. DOI: https://doi.org/10.51903/elkom.v15i2.918.
Rasidi, M. A., Hikmatullah, N., & Sobry, M. (2021). Hambatan guru dalam pembelajaran daring: Studi kasus di kelas V MIN 2 Kota Mataram. Jurnal Ilmiah Pendidikan Dasar, 8(2), 159-174. DOI: http://dx.doi.org/10.30659/pendas.8.2.159-174.
Rasyiidin, M. Y. B., Hermawan, I., Kurniawan, A., Murad, F. A., Agustin, M., & Arnaldy, D. (2022). Akses internet gratis untuk usaha mikro kecil dan menengah menggunakan teknologi wireless manajemen channel. Bubungan Tinggi: Jurnal Pengabdian Masyarakat, 4(1), 211-219.
Sari, D. P. EVALUASI PROGRAM INTERNET GRATIS KELURAHAN DALAM MENDUKUNG e-LEARNING DAN e-MARKETING DI KOTA CILEGON.
Sarimole, F. M., & Ihsan, A. N. (2023). Analisis Sentimen Twitter Terhadap Uu Cipta Kerja Dengan Menggunakan Algoritma Naïve Bayes Dan Support Vector Machine. INTECOMS: Journal of Information Technology and Computer Science, 6(2), 822-829. DOI: https://doi.org/10.31539/intecoms.v6i2.7671.
Setiawan, H., Utami, E., & Sudarmawan, S. (2021). Analisis Sentimen Twitter Kuliah Online Pasca Covid-19 Menggunakan Algoritma Support Vector Machine dan Naive Bayes. Jurnal Komtika (Komputasi dan Informatika), 5(1), 43-51. DOI: https://doi.org/10.31603/komtika.v5i1.5189.
Syahda, A. P. A., & Handayani, A. (2024). IMPLEMENTASI PROGRAM WIFI GRATIS UNTUK RUANG TERBUKA PUBLIK DI KOTA BANDAR LAMPUNG. Triwikrama: Jurnal Ilmu Sosial, 3(6), 1-10.
Widyanto, T., Ristiana, I., & Wibowo, A. (2023). Komparasi Naïve Bayes dan SVM Analisis Sentimen RUU Kesehatan di Twitter. SINTECH (Science and Information Technology) Journal, 6(3), 147-161. DOI: https://doi.org/10.31598/sintechjournal.v6i3.1433.
Wulandari, S., & Hasan, F. N. (2024). Analisis Sentimen Masyarakat Indonesia Terhadap Pengalaman Belanja Thrifting Pada Media Sosial Twitter Menggunakan Algoritma Naïve Bayes. Jurnal Media Informatika Budidarma, 8(2), 768-776. DOI: http://dx.doi.org/10.30865/mib.v8i2.7520.
Zelina, N., & Afiyati, A. (2024). Analisis Sentimen Ulasan Pengguna Aplikasi M-Banking Menggunakan Algoritma Support Vector Machine dan Decision Tree. Jurnal Linguistik Komputasional, 7(1), 31-37. DOI: https://doi.org/10.26418/jlk.v7i1.169.