Sistem Data Mining Penentuan Prioritas terhadap Penerima Bantuan Bencana Banjir dengan Metode Naive Bayes dan Klusterisasi K-Means (Studi Kasus: Wilayah Cengkareng 2025)
Main Article Content
Abstract
Article Summary
This research develops a ranking system for flood aid recipients in Jakarta, focusing on Cengkareng, by utilizing K-Means and Naïve Bayes algorithms. Data were obtained from Satu Data Jakarta (2025), comprising 158 records with attributes including region, sub-district, village, average water level, affected RWs, families, individuals, and flood events. The analytical workflow encompasses data cleaning and normalization, risk level clustering using K-Means (three categories: high, medium, low), and predictive classification with Naïve Bayes. Model evaluation at training-testing splits of 70:30, 80:20, and 90:10 reveals that the combined K-Means and Naïve Bayes approach achieves the highest accuracy of 98.18%, significantly outperforming conventional Naïve Bayes which reached only 43.47%. This improvement demonstrates the effectiveness of combining both algorithms for complex data classification. The developed system expedites the prioritization process, facilitates local teams in verifying recipient lists, and enhances the precision of aid distribution and evacuation. Field simulations with community members were conducted to assess the system’s practical implementation and ensure direct access to flood risk information. Future development will focus on integrating external variables such as real-time rainfall data and expanding field testing to other regions.
Downloads
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License (CC-BY 4.0) that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.
References
Anggraini, N., Pangaribuan, B., Siregar, A. P., Sintampalam, G., Muhammad, A., Damanik, M. R. S., & Rahmadi, M. T. (2021). Analisis pemetaan daerah rawan banjir di kota medan tahun 2020. Jurnal Samudra Geografi, 4(2), 27-33. https://doi.org/10.33059/jsg.v4i2.3851.
Angreini, S., & Supratman, E. (2021). Visualisasi Data Lokasi Rawan Bencana Di Provinsi Sumatera Selatan Menggunakan Tableau. Jurnal Nasional Ilmu Komputer, 2(2), 135-147.
Bui, M. A., & Bahtiar, A. (2024). Implementasi metode algoritma K-Means Clustering untuk mengelompokkan transaksi penjualan barang di Toko Arino. JATI (Jurnal Mahasiswa Teknik Informatika), 8(2), 1451-1456.
Burhaeın, E., Fadjerı, A., & Widiyono, I. P. (2024). Application of naive bayes algorithm for physical fitness level classification. International Journal of Disabilities Sports and Health Sciences, 7(1), 178-187.
Effendi, M. M., & Siswandi, A. (2024). Analysis Prediksi Wilayah Rawan Banjir dengan Algoritma K-Means. Journal of Information System Research (JOSH), 5(2), 697-703.
Fatonah, N. S., Buana, M., Selatan, J. M., Kembangan, K., Barat, J., Khusus, D., ... & Com, N. (2021). Penerapan Deteksi Bencana Banjir Menggunakan Metode Machine Learning. vol, 10, 119-126.
Iriadi, N., & Priatno, A. I. (2020). Penerapan Data Mining dengan Rapid Miner.
Khomsiyah, J., Ramdhani, A., Damayanti, A. F., & Rohman, D. (2021). Penerapan Algoritma K-means Clustering untuk Pengelompokan Wilayah Rawan Banjir. JURNAL ILMIAH BETRIK: Besemah Teknologi Informasi dan Komputer, 12(3), 249-253.
Learning, M. M. M. Penerapan Deteksi Bencana Banjir Menggunakan Metode Machine Learning.
Nigam, N., & Rajavat, A. (2020). A Systematic Literature Review of Data Classification Techniques. International Journal of Computer Applications, 177(44), 41.
Ridwan, A. (2020). Penerapan Algoritma Naïve Bayes Untuk Klasifikasi Penyakit Diabetes Mellitus. J. SISKOM-KB (Sistem Komput. dan Kecerdasan Buatan), 4(1), 15-21. https://doi.org/10.47970/siskom-kb.v4i1.169.
Riyanto, S., Imas, S. S., Djatna, T., & Atikah, T. D. (2023). Comparative analysis using various performance metrics in imbalanced data for multi-class text classification. International Journal of Advanced Computer Science and Applications, 14(6).
Saputra, M. (2025). FLOOD PREDICTION WITH NAIVE BAYES METHOD. Technovasia: Journal of Technology & Computer Research in Innovation, Science, and Applications, 1(1), 10-17.
Sinatrya, I. M., Pohan, A. B., Yunita, Y., Amalia, H., & Lestari, A. F. (2025). Penerapan Integrasi Algoritma K-Means Dan Naïve Bayes Untuk Klasifikasi Wilayah Rawan Banjir Di Jakarta. Computer Science (CO-SCIENCE), 5(2), 67-76. https://doi.org/10.31294/coscience.v5i2.6900.
Sirichanya, C., & Kraisak, K. (2021). Semantic data mining in the information age: A systematic review. International Journal of Intelligent Systems, 36(8), 3880-3916. https://doi.org/10.1002/int.22443.
Yunus, A. Y., Ahmad, S. N., Latief, R., Mulfiyanti, D., Badrun, B., Syarif, M., ... & Gusty, S. (2024). Bencana alam dan manajemen risiko bencana. Tohar Media.
Zai, C. (2022). Implementasi data mining sebagai pengolahan data. Jurnal Portal Data, 2(3).
Zhang, X. (2020). Research on data mining algorithm based on pattern recognition. International Journal of Pattern Recognition and Artificial Intelligence, 34(06), 2059015. https://doi.org/10.1142/S0218001420590156.