Komparasi Penerapan Algoritma C4.5 dan Naïve Bayes untuk Ketepatan Waktu Pengiriman Barang Pada PT. Rtrans Logistik Artamandiri
Main Article Content
Abstract
Article Summary
The logistics industry faces significant challenges in maintaining the punctual delivery of goods, which is a critical factor in enhancing customer satisfaction and reducing operational costs. This research aims to compare the effectiveness of the C4.5 and Naïve Bayes algorithms in analyzing the factors that influence delivery punctuality at PT. Rtrans Logistics Artamandiri. A dataset comprising 1,000 shipping records and 13 relevant attributes was utilized to assess each algorithm’s predictive performance in supporting decision-making processes related to delivery efficiency. The findings reveal that the C4.5 algorithm achieves a higher accuracy of 95.00%, compared to the Naïve Bayes algorithm, which reached an accuracy of 91.00%. Furthermore, this study highlights the importance of selecting the appropriate algorithm in logistics management to enhance operational efficiency and customer satisfaction. The results of this research are expected to provide a foundation for strategic decision-making in the field of goods delivery, particularly in optimizing delivery timeliness.
Downloads
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
References
Amril Mutoi Siregar, S. K. M. K. D. A. N. A. P. S. K. M. K. (n.d.). Data mining: Pengolahan data menjadi informasi dengan RapidMiner. CV Kekata Group. https://books.google.co.id/books?id=rTlmDwAAQBAJ
Anggi Trifani, A., Perdana Windarto, A., & Qurniawan, H. (2022). Penerapan data mining klasifikasi C4.5 dalam menentukan tingkat stres mahasiswa akhir. Jurnal Riset Rumpun Ilmu Teknik, 1(2), 91–105. https://doi.org/10.55606/jurritek.v1i2.414
Arwanda, F. P., Hannie, & Dermawan, B. A. (2021). Komparasi penerapan forward selection pada algoritma C4.5 dan Naïve Bayes untuk memprediksi kompetensi karyawan (Studi kasus: PT. XYZ). Jurnal Ilmiah Wahana Pendidikan, 7(3), 97–104. https://doi.org/10.5281/zenodo.4970680
Azhari, M., Situmorang, Z., & Rosnelly, R. (2021). Perbandingan akurasi, recall, dan presisi klasifikasi pada algoritma C4.5, random forest, SVM, dan Naive Bayes. Jurnal Media Informatika Budidarma, 5(2), 640. https://doi.org/10.30865/mib.v5i2.2937
Dikriani, D., & Indal Karim, A. T. (2023). Comparison of C4.5 and Naive Bayes algorithm methods in prediction of student graduation on time (Case study: Information systems study program). Journal of Dinda: Data Science, Information Technology, and Data Analytics, 3(1), 40–44. https://doi.org/10.20895/dinda.v3i1.782
Fatmawati, F., & Narti, N. (2022). Perbandingan algoritma C4.5 dan Naive Bayes dalam klasifikasi tingkat kepuasan mahasiswa terhadap pembelajaran daring. JTIM: Jurnal Teknologi Informasi dan Multimedia, 4(1), 1–12. https://doi.org/10.35746/jtim.v4i1.196
Fitriani, E. (2020). Perbandingan algoritma C4.5 dan Naïve Bayes untuk menentukan kelayakan penerima bantuan program keluarga harapan. Sistemasi, 9(1), 103. https://doi.org/10.32520/stmsi.v9i1.596
Gusrialni, Fitri, N., Adilya, S., & Azizi, F. (2023). Comparison of the Naive Bayes classification system and C4.5 for the diagnosis of stroke. SENTIMAS: Seminar Nasional Penelitian dan Pengabdian Masyarakat, 49–55.
Harianto, H., & Rosiyadi, D. (2020). Komparasi algoritma C4.5, Naïve Bayes dan k-nearest neighbor sebagai sistem pendukung keputusan menaikkan jumlah peserta didik. Jurnal Informatika, 7(1), 55–61. https://doi.org/10.31311/ji.v7i1.7250
Lasarudin, A., Gani, H., & Tomayahu, M. (2023). Perbandingan metode Naïve Bayes dan C4.5 klasifikasi status gizi bayi balita. SPECTA Journal of Technology, 6(3), 273–283. https://doi.org/10.35718/specta.v6i3.789
Martin, M., & Nilawati, L. (2021). Comparison of C4.5 and Naïve Bayes algorithms for assessment of public complaints services. Journal of Informatics and Telecommunication Engineering, 5(1), 101–111. https://doi.org/10.31289/jite.v5i1.5292
Normah, Y., Novianti, D., Winnarto, M. N., Zumarniansyah, A., & Linawati, S. (2020). Comparison of classification C4.5 algorithms and Naïve Bayes classifier in determining merchant acceptance on sponsorship program. Journal of Physics: Conference Series, 1641(1). https://doi.org/10.1088/1742-6596/1641/1/012006
Novriandy, A. (2023). Implementasi algoritma Naive Bayes dan algoritma C4.5 dalam klasifikasi kelayakan bantuan UMKM. KLIK: Kajian Ilmiah Informatika dan Komputer, 4(1), 208–217. https://doi.org/10.30865/klik.v4i1.1099
Parkhan, A., & Sugarindra, M. (2022). Kualitas mekanis kain tenun menggunakan metode Vikor. Jurnal Disprotek, 13(2), 137–145. https://doi.org/10.34001/jdpt.v12i2
Pemilihan Penggunaan Jenis di Bidan Swasta, Hayati, E., Utami, N. C., Hananto, U. K., & Hilabi, S. (2023). Komparasi metode klasifikasi data mining algoritma C4.5 dan Naïve Bayes. Journal of Social Science Research, 3, 503–513.
Purnomo, N. H., Pamungkas, B., & Juliane, C. (2023). Penerapan algoritma C4.5 untuk klasifikasi tren pelanggaran kendaraan angkutan barang dengan metode CRISP-DM. Jurnal Media Informatika Budidarma, 7(1), 30–40. https://doi.org/10.30865/mib.v7i1.5247
Rian Pratama, Huda, B., Novalia, E., & Kabir, H. (2022). Perbandingan algoritma C4.5 dan Naïve Bayes dalam menentukan persediaan stok. Metik Jurnal, 6(2), 115–122. https://doi.org/10.47002/metik.v6i2.379
Rizqullah, M. F., Raihana, N. T., & Jambak, M. I. (2024). Komparasi penerapan algoritma C4.5, k-nearest neighbor, dan Naïve Bayes untuk keberlangsungan pasien gagal jantung. KLIK: Kajian Ilmiah Informatika dan Komputer, 4(5), 2580–2587. https://doi.org/10.30865/klik.v4i5.1788
Romli, I., & Kurniawan, M. E. (2022). Klasifikasi kerusakan barang dengan menggunakan komparasi algoritma C4.5 dan Naive Bayes. JUMINTAL: Jurnal Manajemen Informatika dan Bisnis Digital, 1(1), 21–30. https://doi.org/10.55123/jumintal.v1i1.303
Rovidatul, Y., & Nurcahyo, G. W. (2023). Perbandingan algoritma C4.5 dan Naïve Bayes dalam prediksi kelulusan mahasiswa. Jurnal CoSciTech (Computer Science and Information Technology), 4(1), 193–199. https://doi.org/10.37859/coscitech.v4i1.4755
Rudianto, R., Wahyudi, T., & Handayani, P. (2022). Perbandingan akurasi C4.5 dan Naive Bayes untuk evaluasi kinerja karyawan PT Catur Sentosa Adiprana. Jurnal Sistem Informasi dan Ilmu Komputer Prima (JUSIKOM PRIMA), 5(2), 61–66. https://doi.org/10.34012/jurnalsisteminformasidanilmukomputer.v5i2.2350
Supriyadi, A. (2023). Perbandingan algoritma Naïve Bayes dan decision tree (C4.5) dalam klasifikasi dosen berprestasi. Generation Journal, 7(1), 39–49. https://doi.org/10.29407/gj.v7i1.19797
Widaningsih, S. (2019). Perbandingan metode data mining untuk prediksi nilai dan waktu kelulusan mahasiswa prodi teknik informatika dengan algoritma C4.5, Naïve Bayes, k-NN, dan SVM. Jurnal Tekno Insentif, 13(1), 16–25. https://doi.org/10.36787/jti.v13i1.78
Widayati, Y. T., Prihati, Y., & Widjaja, S. (2021). Analisis dan komparasi algoritma Naïve Bayes dan C4.5 untuk klasifikasi loyalitas pelanggan MNC Play Kota Semarang. Jurnal Transformatika, 18(2), 161–171. https://doi.org/10.26623/transformatika.v18i2.2541
Yahya, S. T. M. K. (2022). Data mining. CV Jejak (Jejak Publisher). https://books.google.co.id/books?id=0J2mEAAAQBAJ.