Klasifikasi Sentimen Masyarakat di Twitter terhadap Puan Maharani dengan Metode Modified K-Nearest Neighbor
Main Article Content
Abstract
Article Summary
This study aims to address the challenges in classifying sentiment on Twitter regarding Puan Maharani by implementing the Modified K-Nearest Neighbor (MK-NN) method, supplemented with feature weighting and feature selection techniques. This method is designed to improve accuracy by assigning higher weights to important features and reducing data dimensions to avoid overfitting. Data is collected using a crawling technique on Indonesian-language tweets, which are then manually labeled and processed through a preprocessing stage. The testing results using the modified K-Nearest Neighbor (MK-NN) method with confusion matrices show the model's performance at three different values of K (3, 5, and 7) and data ratios of 90:10, 80:20, and 70:30. With a 90:10 data ratio and K=3, the method achieved the highest accuracy of 89.0%. These results indicate that the combination of MK-NN and related techniques is highly effective in sentiment classification, offering an innovative solution to the limitations of conventional methods. These findings have potential applications in public opinion analysis, particularly for supporting data-driven strategic decision-making.
Keywords
Article Keywords
Downloads
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License (CC-BY 4.0) that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.
FADHLAN, Y. Z. (2023). Klasifikasi Sentimen Masyarakat Di Twitter Terhadap Ganjar Pranowo Dengan Metode Modified K-Nearest Neighbor. Jurnal Informatika Universitas Pamulang, 8(2), 191-198. https://doi.org/10.32493/informatika.v7i2.30686.
Fikry, M., & Oktavia, L. (2023). Klasifikasi Sentimen Masyarakat di Twitter terhadap Kenaikan Harga Bahan Bakar Minyak dengan Metode Modified K-Nearest Neighbor. SATIN-Sains dan Teknologi Informasi, 9(1), 137-148. https://doi.org/10.33372/stn.v9i1.988.
Gori, T., Sunyoto, A., & Al Fatta, H. (2024). Preprocessing Data dan Klasifikasi untuk Prediksi Kinerja Akademik Siswa. Jurnal Teknologi Informasi dan Ilmu Komputer, 11(1), 215-224. https://doi.org/10.25126/jtiik.20241118074.
Hakim, B. (2021). Analisa Sentimen Data Text Preprocessing Pada Data Mining Dengan Menggunakan Machine Learning. Jbase-Journal of business and audit information systems, 4(2). https://doi.org/10.30813/jbase.v4i2.3000.
Hidayat, R., Fikry, M., Yusra, Y., Yanto, F., & Cynthia, E. P. (2024). Penerapan Naïve Bayes Classifier dalam Klasifikasi Sentimen Publik di Twitter terhadap Puan Maharani. JUKI: Jurnal Komputer dan Informatika, 6(1), 93-101. https://doi.org/10.53842/juki.v6i1.479.
Jacob, V. E., Lumenta, A. S., & Jacobus, A. (2019). Rancang Bangun Aplikasi Kemiripan Dokumen Dengan Sumber–Sumber Internet. Jurnal Teknik Informatika, 14(2), 159-164. https://doi.org/10.35793/jti.v14i2.23990.
Khairunnisa, S., Adiwijaya, A., & Al Faraby, S. (2021). Pengaruh Text Preprocessing terhadap Analisis Sentimen Komentar Masyarakat pada Media Sosial Twitter (Studi Kasus Pandemi COVID-19). Jurnal Media Informatika Budidarma, 5(2), 406-414.
Kripsiandita, Y., Arifianto, D., & A'yun, Q. (2021). Deteksi Gangguan Autis Pada Anak Menggunakan Metode Modified K-Nearst Neighbor. JUSTINDO (Jurnal Sistem dan Teknologi Informasi Indonesia), 6(1), 31-37. https://doi.org/10.32528/justindo.v6i1.4357.
Nainggolan, I. D. P., Widyawan, P. A., Akbar, N., & Sholihatin, E. (2023). ANALISIS FRAMING PEMBERITAAN PUAN MAHARANI TERDAHAP ISU PERATURAN PERUNDANG-UNDANGAN CIPTA KERJA DI PORTAL BERITA KOMPAS. COM DAN DETIK. COM PADA EDISI OKTOBER 2020. Sabda: Jurnal Sastra dan Bahasa, 2(1), 1-10. https://doi.org/10.572349/sabda.v2i1.434.
Novitasari, F. (2023). Sistem Klasifikasi Penyakit Jantung Menggunakan Teknik Pendekatan SMOTE Pada Algoritma Modified K-Nearest Neighbor. Jurnal Building of Informatics, Technology and Science (BITS), 5(1), 274-284. https://doi.org/10.47065/bits.v5i1.3610.
Priyansyah, R. N., Wibowo, K. A., & Fuady, I. (2022). TWITTER SEBAGAI MEDIA KOMUNIKASI KRISIS PEMIMPIN PEMERINTAHAN DI INDONESIA (STUDI GELOMBANG COVID-19 VARIAN DELTA DAN OMICRON). Jurnal Studi Komunikasi dan Media, 26(1), 31-52. https://doi.org/10.17933/jskm.2022.4788.
Rachman, D. A. C., Goejantoro, R., & Amijaya, F. D. T. (2021). Implementasi Text Mining Pengelompokkan Dokumen Skripsi Menggunakan Metode K-Means Clustering. EKSPONENSIAL, 11(2), 167-174. https://doi.org/10.30872/eksponensial.v11i2.660.
Salim, S. S., & Mayary, J. (2020). Analisis Sentimen pengguna Twitter terhadap dompet elektronik dengan metode lexicon based dan k–nearest neighbor. Jurnal Ilmiah Informatika Komputer, 25(1), 1-17. https://doi.org/10.35760/ik.2020.v25i1.2411.
Sihombing, D. Y., & Nataliani, Y. (2021). Analisis Interaksi Pengguna Twitter pada Strategi Pengadaan Barang Menggunakan Social Network Analysis. Sistemasi: Jurnal Sistem Informasi, 10(2), 434-444.
Singgalen, Y. A. (2021). Pemilihan metode dan algoritma dalam analisis sentimen di media sosial: sistematic literature review. Journal of Information Systems and Informatics, 3(2), 278-302. https://doi.org/10.33557/journalisi.v3i2.125.
Tarecha, R. I., Wahyudi, F., & Jannah, U. M. (2022). Penanganan Negasi dalam Analisa Sentimen Bahasa Indonesia. Jurnal Sistem Informasi dan Informatika (JUSIFOR), 1(1), 51-58. https://doi.org/10.33379/jusifor.v1i1.1276.
Utami, I., & Marzuki, M. (2020). Analisis sistem informasi banjir berbasis media twitter. Jurnal Fisika Unand, 9(1), 67-72. https://doi.org/10.25077/jfu.9.1.67-72.2020.
Vonega, D. A., Fadila, A., & Kurniawan, D. E. (2022). Analisis Sentimen Twitter Terhadap Opini Publik Atas Isu Pencalonan Puan Maharani dalam PILPRES 2024. Journal of Applied Informatics and Computing, 6(2), 129-135.
Waruwu, M. (2024). Metode Penelitian dan Pengembangan (R&D): Konsep, Jenis, Tahapan dan Kelebihan. Jurnal Ilmiah Profesi Pendidikan, 9(2), 1220-1230. https://doi.org/10.29303/jipp.v9i2.2141.
Whendasmoro, R. G., & Joseph, J. (2022). Analisis Penerapan Normalisasi Data Dengan Menggunakan Z-Score Pada Kinerja Algoritma K-NN. JURIKOM (Jurnal Riset Komputer), 9(4), 872-876.

 
							 
						 
                					 
                			 
                			