PENERAPAN ALGORITMA TF-IDF DAN NAÏVE BAYES UNTUK ANALISIS SENTIMEN BERBASIS ASPEK ULASAN APLIKASI FLIP PADA GOOGLE PLAY STORE
Main Article Content
Abstract
Article Summary
The development of the internet has changed people's lifestyle with the existence of FinTech. One of the popular FinTech innovations is the Flip digital wallet application. In this study, aspect-based sentiment analysis was carried out on Flip user reviews using the naive bayes algorithm. The test results show high accuracy, with an average accuracy of 0.84. The naive bayes algorithm is effective in classifying user reviews based on aspects of speed, security, and cost, with accuracies of 0.80, 0.87, and 0.84, respectively. This research provides important insights for service providers to improve service performance and innovation. The labelling data generated the most sentiment 0 (no sentiment), followed by sentiment 1 (positive) and 2 (negative). Negative sentiments have a high frequency on speed and security aspects, while positive sentiments have a high frequency on cost aspects. Thus, improvements are needed to the security system and speed of the Flip application to increase user satisfaction in these aspects. The naive bayes algorithm can be a useful tool in processing review data on e-wallet applications and similar services.
Keywords
Article Keywords
Fintech ; E-Wallet ; ABSA ; Naïve Bayes ; Reviews
Downloads
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License (CC-BY 4.0) that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.
Abubakar, L., & Handayani, T. (2018, July). Financial technology: Legal challenges for Indonesia financial sector. In IOP Conference Series: Earth and Environmental Science (Vol. 175, No. 1, p. 012204). IOP Publishing.. DOI: 10.1088/1755-1315/175/1/012204.
Sulistyowati, R., Paais, L., & Rina, R. (2020). Persepsi konsumen terhadap penggunaan dompet digital. ISOQUANT: Jurnal Ekonomi, Manajemen dan Akuntansi, 4(1), 17-34. DOI: 10.24269/iso.v4i1.323
Karim, M. W., Haque, A., Ulfy, M. A., Hossain, M. A., & Anis, M. Z. (2020). Factors influencing the use of E-wallet as a payment method among Malaysian young adults. Journal of International Business and Management, 3(2), 1-12.”, DOI: 10.37227/jibm-2020-2-21.
Sari, F. V., & Wibowo, A. (2019). Analisis sentimen pelanggan toko online Jd. Id menggunakan metode Naïve Bayes Classifier berbasis konversi ikon emosi. Simetris: Jurnal Teknik Mesin, Elektro dan Ilmu Komputer, 10(2), 681-686. DOI: https://doi.org/10.24176/simet.v10i2.3487
Madhoushi, Z., Hamdan, A. R., & Zainudin, S. (2019). Aspect-based sentiment analysis methods in recent years. Asia-Pacific Journal Of Information Technology And Multimedia, 7(2), 79-96. [Online]. Available: http://www.ftsm.ukm.my/apjitm
Zulfikar, W. B., & Lukman, N. (2016). Perbandingan Naive Bayes classifier dengan Nearest Neighbor untuk identifikasi penyakit mata. Jurnal Online Informatika, 1(2), 82-86. DOI: https://doi.org/10.15575/join.v1i2.33.
Muslehatin, W., Ibnu, M., & Mustakim, M. (2017). Penerapan Naïve Bayes Classification untuk Klasifikasi Tingkat Kemungkinan Obesitas Mahasiswa Sistem Informasi UIN Suska Riau. In Seminar Nasional Teknologi Informasi Komunikasi dan Industri (pp. 250-256).
Devita, R. N., Herwanto, H. W., & Wibawa, A. P. (2018). Perbandingan kinerja metode naive bayes dan k-nearest neighbor untuk klasifikasi artikel berbahasa indonesia. J. Teknol. Inf. dan Ilmu Komput, 5(4). DOI: 10.25126/jtiik.201854773.
Puspita, C. E., Pratiwi, O. N., & Sutoyo, E. (2021). Perbandingan Algoritma Klasifikasi Support Vector Machine Dan Naive Bayes Pada Imbalance Data. JURTEKSI (Jurnal Teknologi dan Sistem Informasi), 8(1), 11-18. DOI: 10.33330/jurteksi.v8i1.1185.
Wahyudi, R., & Kusumawardhana, G. (2021). Analisis Sentimen pada review Aplikasi Grab di Google Play Store Menggunakan Support Vector Machine. J. Inform, 8(2), 8. [Online]. Available: http://ejournal.bsi.ac.id/ejurnal/index.php/ji
Locarso, G. K. (2022). Analisis Sentimen Review Aplikasi Pedulilindungi Pada Google Play Store Menggunakan NBC. JTIK (Jurnal Teknik Informatika Kaputama), 6(2), 353-361.
Marginingsih, R. (2019). Analisis SWOT technology financial (fintech) terhadap industri perbankan. Cakrawala: Jurnal Humaniora Bina Sarana Informatika, 19(1), 55-60. DOI: 10.31294/jc.v19i1.
Siswanti, T. (2022). Analisis Pengaruh Manfaat Ekonomi, Keamanan Dan Risiko Terhadap Minat Penggunaan Financial Technology (Fintech)(Study Kasus Pada Masyarakat Di Wilayah Kecamatan Bekasi Timur). Jurnal Bisnis & Akuntansi Unsurya, 7(2). DOI: 10.35968/jbau.v7i2.899.
Damanik, F. J., & Setyohadi, D. B. (2021, March). Analysis of public sentiment about COVID-19 in Indonesia on Twitter using multinomial naive bayes and support vector machine. In IOP Conference Series: Earth and Environmental Science (Vol. 704, No. 1, p. 012027). IOP Publishing. DOI: 10.1088/1755-1315/704/1/012027.
Herwijayanti, B., Ratnawati, D. E., & Muflikhah, L. (2018). Klasifikasi Berita Online dengan menggunakan Pembobotan TF-IDF dan Cosine Similarity. Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer, 2(1), 306-312. [Online]. Available: http://j-ptiik.ub.ac.id
Peryanto, A., Yudhana, A., & Umar, R. (2020). Klasifikasi Citra Menggunakan Convolutional Neural Network dan K Fold Cross Validation. Journal of Applied Informatics and Computing, 4(1), 45-51. DOI: 10.30871/jaic.v4i1.2017.
Handayani, F., & Pribadi, F. S. (2015). Implementasi algoritma naive bayes classifier dalam pengklasifikasian teks otomatis pengaduan dan pelaporan masyarakat melalui layanan call center 110. Jurnal Teknik Elektro, 7(1), 19-24. DOI: https://doi.org/10.15294/jte.v7i1.8585
Rahayu, A. S., Fauzi, A., & Rahmat, R. (2022). Komparasi Algoritma Naïve Bayes Dan Support Vector Machine (SVM) Pada Analisis Sentimen Spotify. Jurnal Sistem Komputer dan Informatika (JSON), 4(2), 349-354. DOI: 10.30865/json.v4i2.5398.
Rahayu, S., Yumarlin, M. Z., Bororing, J. E., & Hadiyat, R. (2022). Implementasi Metode K-Nearest Neighbor (K-NN) untuk Analisis Sentimen Kepuasan Pengguna Aplikasi Teknologi Finansial FLIP. Edumatic J. Pendidik. Inform, 6(1), 98-106.DOI: 10.29408/edumatic.v6i1.5433.