ASPECT-BASED SENTIMENT ANALYSIS TERHADAP ULASAN APLIKASI FLIP MENGGUNAKAN PEMBOBOTAN TERM FREQUENCY-INVERSE DOCUMENT FREQUENCY (TF-IDF) DENGAN METODE KLASIFIKASI K-NEAREST NEIGHBORS (K-NN)
Main Article Content
Abstract
Article Summary
The rapid growth of online transactions in Indonesia has increased the demand for efficient interbank transfer solutions. However, the costs associated with such transactions have become a significant obstacle. Flip, a company with a vision to become a global leader in customer satisfaction-driven services, offers a solution to this challenge. This study proposes an aspect-based sentiment analysis method using the K-Nearest Neighbors (K-NN) algorithm to analyze user sentiment on key aspects, namely speed, security, and the cost of using the Flip application. The results of this research provide valuable information that can be used as a basis to provide insights, suggestions and recommendations to businesses, so they can create better solutions and promote optimal user experience. The research results show that the K-NN model has the ability to predict user psychology well in all aspects, with a significant level of accuracy, specifically speed (73.04%), security (86, 05%) and costs (80.11%). In addition, this study also compares two model validation methods: simple data splitting method and K-Fold cross-validation. Although the simple data splitting method has a higher average accuracy, K-fold cross-validation is considered superior as it provides a more accurate and reliable estimate of the overall performance of the model. Sentiment analysis results show that Flip app users tend to give negative feedback on speed and security, while they give positive feedback on cost. Therefore, the main recommendation is that the company PT Fliptech Lentera Inspirasi Pertiwi improves the speed and security aspects to increase user satisfaction with the Flip application. Therefore, this customer-centric service will continue to prioritize user satisfaction as its primary goal.
Keywords
Article Keywords
Downloads
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License (CC-BY 4.0) that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.
Darmawan, F. (2022). TA: Analisis Kesuksesan Aplikasi Flip. Id Berdasarkan Persepsi Pengguna dengan Menggunakan Model DeLone and McLean (Doctoral dissertation, Universitas Dinamika). [Online]. Available: https://repository.dinamika.ac.id/id/eprint/6688/
Cahyani, I. P. (2020). Membangun Engagement Melalui Platform Digital (Studi Kasus Flip sebagai Start-Up Fintech). Ekspresi Dan Persepsi: Jurnal Ilmu Komunikasi, 3(2), 76-87. DOI: 10.33822/jep.v3i2.1668.
Giovani, A. P., Ardiansyah, A., Haryanti, T., Kurniawati, L., & Gata, W. (2020). Analisis Sentimen Aplikasi Ruang Guru Di Twitter Menggunakan Algoritma Klasifikasi. Jurnal Teknoinfo, 14(2), 115-123. DOI: 10.33365/jti.v14i2.679.
Rahayu, S., Yumarlin, M. Z., Bororing, J. E., & Hadiyat, R. (2022). Implementasi Metode K-Nearest Neighbor (K-NN) untuk Analisis Sentimen Kepuasan Pengguna Aplikasi Teknologi Finansial FLIP. Edumatic J. Pendidik. Inform, 6(1), 98-106. DOI: 10.29408/edumatic.v6i1.5433.
Yustihan, S. R., Adikara, P. P., & Indriati, I. (2021). Analisis Sentimen berbasis Aspek terhadap Data Ulasan Rumah Makan menggunakan Metode Support Vector Machine (SVM). Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer, 5(3), 1017-1023.
Perdana, S. A. P., Aji, T. B., & Ferdiana, R. (2021). Aspect Category Classification dengan Pendekatan Machine Learning Menggunakan Dataset Bahasa Indonesia. Jurnal Nasional Teknik Elektro dan Teknologi Informasi, 10(3), 229-235. DOI: https://doi.org/10.22146/jnteti.v10i3.1819.
Sulistio, H. G., & Handojo, A. (2022). Aspect-Based Sentiment Analysis pada Ulasan ECommerce dengan Metode Support Vector Machine untuk Mendapatkan Informasi Sentimen dari Beberapa Aspek. Jurnal Infra, 10(2), 450-454.
Hamzah, F., Astuti, W., & Purbolaksono, M. D. (2022). Sentiment Analysis Pada Movie Review Menggunakan Feature Selection Chi Square Dan Support Vector Machine Classifier. eProceedings of Engineering, 9(3).
S. Prayogo, Y. Sibaroni, and S. Si, (2019). Aspect Based Sentiment Analysis Terhadap Ulasan Hotel Berbahasa Indonesia. Bandung.
ADMINLP2M, “Algoritma K-Nearest Neighbors (KNN) – Pengertian dan Penerapan.,” Lembaga Penelitian dan Pengabdian Masyarakat (LP2M) Universitas Medan Area, Feb. 16, 2023. https://lp2m.uma.ac.id/2023/02/16/algoritma-k-nearest-neighbors-knn-pengertian-dan-penerapan/ (accessed Aug. 07, 2023).
Amardita, R. S., Adiwijaya, A., & Purbolaksono, M. D. (2022). Analisis Sentimen terhadap Ulasan Paris Van Java Resort Lifestyle Place di Kota Bandung Menggunakan Algoritma KNN. JURIKOM (Jurnal Riset Komputer), 9(1), 62-68. DOI: 10.30865/jurikom.v9i1.3793.
Fadhilah, J., Layyinna, C. A. A., Khatami, R., & Fitroh, F. (2021). Pemanfaatan Teknologi Digital Wallet Sebagai Solusi Alternatif Pembayaran Modern: Literature Review. Journal of Computer Science and Engineering (JCSE), 2(2), 89-97. DOI: 10.36596/jcse.v2i2.219.
Arimuko, A., Wibawa, A. S. W., & Firmansyah, A. (2019). Analisis Perbandingan Penentuan Hiposentrum Menggunakan Metode Grid Search, Geiger, dan Random Search: Studi Kasus pada Letusan Gunung Sinabung 2017. DIFFRACTION: Journal for Physics Education and Applied Physics, 1(2), 22-28. DOI: https://doi.org/10.37058/diffraction.v1i2.1290.
Mardiana, L., Kusnandar, D., & Satyahadewi, N. (2022). Analisis Diskriminan Dengan K Fold Cross Validation Untuk Klasifikasi Kualitas Air Di Kota Pontianak. Bimaster: Buletin Ilmiah Matematika, Statistika dan Terapannya, 11(1). DOI: http://dx.doi.org/10.26418/bbimst.v11i1.51608.