Sistem Pakar Diagnosa Kelainan Stunting Balita Menggunakan Metode KNN Berbasis Web
Main Article Content
Abstract
Article Summary
Stunting in young children is a child nutrition problem in Indonesia. This research has the main objective of preventing and overcome it through a technique that can predict stunted babies based on data or information. This study using KNN method uses 125 test data and the value of k = 3 gives an accuracy of 96%. This includes 119 accurate predictions and 6 inaccurate predictions. The aim of this study is to predict the outcome of stunting in toddlers. If they fall into the stunting category, the parents of the toddler must pay more attention to the nutritional development of the toddler to be able to minimize the stunting rate in Indonesia.
Keywords
Article Keywords
Downloads
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License (CC-BY 4.0) that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.
Bridgman, G., & von Fintel, D. (2022). Stunting, double orphanhood and unequal access to public services in democratic South Africa. Economics & Human Biology, 44, 101076.
Crookston, B. T., Penny, M. E., Alder, S. C., Dickerson, T. T., Merrill, R. M., Stanford, J. B., ... & Dearden, K. A. (2010). Children who recover from early stunting and children who are not stunted demonstrate similar levels of cognition. The Journal of nutrition, 140(11), 1996-2001.
Haile, B., & Headey, D. (2023). Growth in milk consumption and reductions in child stunting: Historical evidence from cross-country panel data. Food Policy, 118, 102485.
Waliulu, S. H., Ibrahim, D., & Umasugi, M. T. (2018). Pengaruh edukasi terhadap tingkat pengetahuan dan upaya pencegahan stunting anak usia balita. Jurnal Penelitian Kesehatan" SUARA FORIKES"(Journal of Health Research" Forikes Voice"), 9(4), 269-272. DOI: http://dx.doi.org/10.33846/sf9407.
Hidayat, M. T., & Laluma, R. H. (2022). PENERAPAN METODE K-NEAREST NEIGHBOR UNTUK KLASIFIKASI GIZI BALITA. Infotronik: Jurnal Teknologi Informasi dan Elektronika, 7(2), 64-69. DOI: https://doi.org/10.32897/infotronik.2022.7.2.1702.
Oginawati, K., Yapfrine, S. J., Fahimah, N., Salami, I. R. S., & Susetyo, S. H. (2023). The associations of heavy metals exposure in water sources to the risk of stunting cases. Emerging Contaminants, 9(4), 100247.
Setiawan, R., & Triayudi, A. (2022). Klasifikasi Status Gizi Balita Menggunakan Naïve Bayes dan K-Nearest Neighbor Berbasis Web. JURNAL MEDIA INFORMATIKA BUDIDARMA, 6(2), 777-785. DOI: http://dx.doi.org/10.30865/mib.v6i2.3566.
Prasetiya, T., Ali, I., Rohmat, C. L., & Nurdiawan, O. (2020). Klasifikasi Status Stunting Balita Di Desa Slangit Menggunakan Metode K-Nearest Neighbor. INFORMATICS FOR EDUCATORS AND PROFESSIONAL: Journal of Informatics, 5(1), 93-104. DOI: https://doi.org/10.51211/itbi.v5i1.1431.
Drajana, I. C. R., & Bode, A. (2022). Prediksi Status Penderita Stunting Pada Balita Provinsi Gorontalo Menggunakan K-Nearest Neighbor Berbasis Seleksi Fitur Chi Square. Jurnal Nasional Komputasi dan Teknologi Informasi (JNKTI), 5(2).
Bachri, O. S., & Bhakti, R. M. H. (2021). Penentuan Status Stunting pada Anak dengan Menggunakan Algoritma KNN. Jurnal Ilmiah Intech: Information Technology Journal of UMUS, 3(02), 130-137.
Ali, I., Kurnia, D. A., Pratama, M. A., & Al Ma’ruf, F. (2021). Klasifikasi Status Stunting Balita Di Desa Slangit Menggunakan Metode K-Nearest Neighbor. KOPERTIP: Scientific Journal of Informatics Management and Computer, 5(3), 35-39.
Sapriatin, B., & Sianturi, F. A. (2021). Penerapan Teorema Bayes Mendeteksi Stunting pada Balita. Jurnal Media Informatika, 3(1), 24-37. DOI: https://doi.org/10.55338/jumin.v3i1%20Desember.203.