CLUSTERING ZONASI DAERAH RAWAN BENCANA ALAM DI PROVINSI SUMATERA BARAT MENGGUNAKAN ALGORITMA K-MEANS DAN LIBRARY GEOPANDAS
Main Article Content
Abstract
Article Summary
Indonesia is one of the countries that are often affected by natural disasters because it is located on the Asia Pacific Ring of Fire. West Sumatra province is one of the most frequently hit by natural disasters including earthquakes. According to the Central Bureau of Statistics of West Sumatra from 2018-2021, there were 1,148 earthquake cases and 1,503 flood cases. The objective of this study is to reveal areas prone to natural disasters in West Sumatra province using K-Means algorithm and GeoPandas visualization. After doing data processing for the optimal K value, 3 clusters were obtained, namely, cluster 1 is not prone to natural disasters, cluster 2 is prone to natural disasters and cluster 3 is very prone to natural disasters. From this research, it is found that cluster 1 has 7 members of the region, cluster 2 has 11 members of the region, and cluster 3 has 1 member of the region.
Keywords
Article Keywords
Downloads
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License (CC-BY 4.0) that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.
Rais, L. N. 2021. Analisis Bencana Gempa Bumi Dan Mitigasi Bencana Di Daerah Kertasari. Jurnal Samudra Geografi, 4(2), 14-19. DOI: https://doi.org/10.33059/jsg.v4i2.3773.
Findayani, A., 2018. Kesiap siagaan masyarakat dalam penanggulangan banjir di Kota Semarang. Jurnal Geografi: Media Informasi Pengembangan Dan Profesi Kegeografian, 12(1), pp.102-114.
Metrikasari, R. and Choiruddin, A., 2021. Pemodelan Risiko Gempa Bumi di Pulau Sumatera Menggunakan Model Inhomogeneous Neyman-Scott Cox Process. Jurnal Sains dan Seni ITS, 9(2), pp.D102-D107. DOI: https://doi.org/10.12962/j23373520.v9i2.52318.
BPS Provinsi Sumatera Barat. https://sumbar.bps.go.id/.
Firdaus, H., 2022. Analisa Cluster Menggunakan K-Means Dan Fuzzy C-Means Dalam Pengelompokan Provinsi Menurut Data Intesitas Bencana Alam Di Indonesia Tahun 2017-2021. MATHunesa: Jurnal Ilmiah Matematika, 10(1), pp.50-60. DOI: https://doi.org/10.26740/mathunesa.v10n1.p50-60.
Suwardi, A.M., Susetyo, B. and Hermawan, E., 2019, October. Analisa Spasial Clustering Zonasi Rawan Bencana Tanah Longsor Wilayah Bogor Selatan Berbasis WebGIS. In Seminar Nasional Teknologi Informasi (Vol. 2, pp. 182-190).
Kurniadewi, H., Hakim, R.A., Jajuli, M. and Jaman, J.H., 2022. Pemetaan UMKM dalam Upaya Pengentasan Kemiskinan dan Penyerapan Tenaga Kerja Menggunakan Algoritma K-Means. Journal of Applied Informatics and Computing, 6(2), pp.113-119. DOI: https://doi.org/10.30871/jaic.v6i2.4227.
Murdiaty, M., Angela, A. and Sylvia, C., 2020. Pengelompokkan Data Bencana Alam Berdasarkan Wilayah, Waktu, Jumlah Korban dan Kerusakan Fasilitas Dengan Algoritma K-Means. Jurnal Media Informatika Budidarma, 4(3), pp.744-752. DOI: http://dx.doi.org/10.30865/mib.v4i3.2213.
Sihombing, R.E., Rachmatin, D. and Dahlan, J.A., 2019. Program Aplikasi Bahasa R Untuk Pengelompokan Objek Menggunakan Metode K-Medoids Clustering. Jurnal EurekaMatika, 7(1), pp.58-79.
Heraldi, H.Y., Aprilia, N.C. and Pratiwi, H., 2019. Analisis Cluster Intensitas Kebencanaan di Indonesia Menggunakan Metode K-Means. Indonesian Journal of Applied Statistics, 2(2), pp.137-144. DOI: https://doi.org/10.13057/ijas.v2i2.34911.
Dewi, D.A.I.C. and Pramita, D.A.K., 2019. Analisis Perbandingan Metode Elbow dan Silhouette pada Algoritma Clustering K-Medoids dalam Pengelompokan Produksi Kerajinan Bali. Matrix: Jurnal Manajemen Teknologi Dan Informatika, 9(3), pp.102-109. DOI: https://doi.org/10.31940/matrix.v9i3.1662.
Geopandas. https://geopandas.org/en/stable/
Yim, A., Chung, C. and Yu, A., 2018. Matplotlib for Python Developers: Effective techniques for data visualization with Python. Packt Publishing Ltd.
Fuadi, W., Meliala, S. and Fariadi, D., 2021. Rancang Bangun Aplikasi Game Pembelajaran Pseudocode Dasar. JET (Journal of Electrical Technology), 6(1), pp.31-34.