Implementasi Algoritma Naïve Bayes Terhadap Data Penjualan untuk Mengetahui Pola Pembelian Konsumen pada Kantin
Main Article Content
Abstract
Article Summary
Implementation of the Naïve Bayes algorithm on sales data to determine consumer buying patterns in canteens is an approach that seeks to overcome the limited understanding of consumer behavior in canteens. The goal of this approach is to analyze sales data and identify purchasing patterns to gain insight into consumer behavior, optimize sales strategies, and improve customer satisfaction. By applying the Naïve Bayes algorithm to sales data, this research seeks to identify factors that influence consumer behavior, such as price, convenience, and menu offerings, and provide insights that can be used to optimize menu offerings, pricing strategies and resource allocation. Additionally, the approach seeks to increase customer satisfaction and differentiate canteens from competitors by personalizing menu offerings and enhancing the overall customer experience. This research also aims to contribute to the field of consumer behavior research by applying the Naïve Bayes algorithm to canteen sales data, potentially providing insights that can be applied in other contexts. Overall, the application of the Naïve Bayes algorithm to canteen sales data can provide a data-driven approach to understanding consumer behavior and improving sales strategy and customer satisfaction.
Downloads
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
References
Nurdiawan, O., & Salim, N. (2018). Penerapan Data Mining Pada Penjualan Barang Menggunakan Metode Metode Naive Bayes Classifier Untuk Optimasi Strategi Pemasaran. Jurnal Teknologi Informasi dan Komunikasi, 13(1), 84-95.
Jiaxian, Y., & Gengming, Z. (2019, March). Algorithm based on improved naive Bayesian for predicting microblog behavior. In Proceedings of the 2019 3rd International Conference on Innovation in Artificial Intelligence (pp. 182-187). DOI: https://doi.org/10.1145/3319921.3319956.
ROZAQ, A. J. (2021). IMPLEMENTASI METODE KLASIFIKASI ALGORITMA NAIVE BAYES DALAM MENGANALISIS TRANSAKSI PENJUALAN PADA 212 MART KUTO PALEMBANG.
Syamsudin, D., Halundaka, Y. C. D., & Nugroho, A. (2020). Prediksi Status Konsumen Produk Celana Menggunakan Naïve Bayes. JOINTECS (Journal of Information Technology and Computer Science), 5(3), 177-184. DOI: https://doi.org/10.31328/jointecs.v5i3.1435.
Yulianto T. (2019). Prediksi Penjualan Produk Menggunakan Algoritma Naïve Bayes (Studi kasus Couple Store Yogyakarta). Skripsi. Fakultas Teknologi Informasi dan Elektro Universitas Teknologi Yogyakarta.
Sari, R M. (2022). Implementasi Data Mining Untuk Memprediksi Penjualan menggunakan Metode Naïve Bayes. Skripsi. Fakultas Sains dan Teknologi Universitas Pembangunan Panca Budi.
Nawangsih, I., & Setyaningsih, A. (2020). THE APPLICATION OF THE NAÏVE BAYES ALGORITHM TO DETERMINE THE CLASSICATION OF BEST SELLING PRODUCTS ON PULSES SALES. Incomtech, 9(1), 39-45.
Ariska, P., Hasibuan, N. A., & Purba, B. (2020). Penerapan Algoritma Naïve Bayes Untuk Perhitungan Nilai Point Of Sales (Pos) Dari Penjualan Produk Fashion (Studi Kasus: CV. Sumber Makmur). KOMIK (Konferensi Nasional Teknologi Informasi dan Komputer), 4(1). DOI: http://dx.doi.org/10.30865/komik.v4i1.2717
Juwita, J., Safii, M., & Damanik, B. E. (2022). Naïve Bayes Algorithm For Predicting Sales at the Pematang Siantar VJCakes Store. JOMLAI: Journal of Machine Learning and Artificial Intelligence, 1(4), 337-346.
Pransiska, N., Mirza, A. H., & Andri, A. (2019). PENERAPAN DATA MINING PREDIKSI PENJUALAN BARANG ELEKTRONIK TERLARIS MENGGUNAKAN ALGORITMA NAÏVE BAYES (Study Kasus: Planet Cash And Credit Cabang Muara Enim). In Bina Darma Conference on Computer Science (BDCCS). 1(6), 2157-2169).