ANALISIS SENTIMEN KEUANGAN (DATA FIQA AND FINANCIAL PHRASEBANK) MENGGUNAKAN ALGORITMA LOGISTIC REGRESSION DAN SUPPORT VECTOR MACHINE
Main Article Content
Abstract
Article Summary
Finance is a very vital sector in a Company and institution because it has a very important strategic role in creating a conducive environment, especially for the improvement of the national economy. Through a combination of FiQA and Financial PhareBank text datasets, an analysis of positive, negative and neutral sentiments related to finance is carried out that can be taken into consideration to make a policy in the financial sector or context in achieving this strategic role. Application of sentiment analysis using hyperparameter tuning in Logistic Regression and Support Vector Machines algorithms, with TF-IDF and Smote weighting on training data. The best model results of 70.70% accuracy on the Support Vector Machine algorithm during model training using training data that is not done Smote class imbalance.
Downloads
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
References
Santoso, A. K., Noviriandini, A., Kurniasih, A., Wicaksono, B. D., & Nuryanto, A. (2021). Klasifikasi Persepsi Pengguna Twitter Terhadap Kasus Covid-19 Menggunakan Metode Logistic Regression. Jurnal Informatika Kaputama (JIK), 5(2), 234-241.
Ardiansyah, D., Saepudin, A., Aryanti, R., & Fitriani, E. (2023). ANALISIS SENTIMEN REVIEW PADA APLIKASI MEDIA SOSIAL TIKTOK MENGGUNAKAN ALGORITMA K-NN DAN SVM BERBASIS PSO. Jurnal Informatika Kaputama (JIK), 7(2), 233-241. DOI: https://doi.org/10.59697/jik.v7i2.148.
Sari, E. D. N., & Irhamah, I. (2020). Analisis Sentimen Nasabah Pada Layanan Perbankan Menggunakan Metode Regresi Logistik Biner, Naïve Bayes Classifier (NBC), dan Support Vector Machine (SVM). Jurnal Sains dan Seni ITS, 8(2), D177-D184. DOI: 10.12962/j23373520.v8i2.44565.
Turjaman, R. M., & Budi, I. (2022). Analisis Sentimen Berbasis Aspek Marketing Mix Terhadap Ulasan Aplikasi Dompet Digital (Studi Kasus: Aplikasi Linkaja Pada Twitter). Jurnal Darma Agung, 30(2), 266-275.
Novantika, A., & Sugiman, S. (2022, February). Analisis Sentimen Ulasan Pengguna Aplikasi Video Conference Google Meet menggunakan Metode SVM dan Logistic Regression. In PRISMA, Prosiding Seminar Nasional Matematika (Vol. 5, pp. 808-813).
Hanif, I. F., Affandi, I. R., Hasan, F. N., Sinduningrum, E., & Halim, Z. (2022). Analisis Sentimen Opini Masyarakat Terkait Penyelenggaraan Sistem Elektronik Menggunakan Metode Logistic Regression. Jurnal Linguistik Komputasional, 5(2), 77-84. DOI: https://doi.org/10.26418/jlk.v5i2.103
Putri, M. I., & Kharisudin, I. (2022, February). Analisis Sentimen Pengguna Aplikasi Marketplace Tokopedia Pada Situs Google Play Menggunakan Metode Support Vector Machine (SVM), Naïve Bayes, dan Logistic Regression. In PRISMA, Prosiding Seminar Nasional Matematika (Vol. 5, pp. 759-766).
Sreya, M. D. D., & Setiawan, E. B. (2022). Penggunaan Metode Glove Untuk Ekspansi Fitur Pada Analisis Sentimen Twitter Dengan Naïve Bayes Dan Support Vector Machine. eProceedings of Engineering, 9(3).
Lidinillah, E. R., Rohana, T., & Juwita, A. R. (2023). Analisis sentimen twitter terhadap steam menggunakan algoritma logistic regression dan support vector machine. TEKNOSAINS: Jurnal Sains, Teknologi dan Informatika, 10(2), 154-164. DOI: https://doi.org/10.37373/tekno.v10i2.440
Noviriandini, A., Hermanto, H., & Yudhistira, Y. (2022). Klasifikasi Support Vector Machine Berbasis Particle Swarm Optimization Untuk Analisa Sentimen Pengguna Aplikasi Pedulilindungi. JIKA (Jurnal Informatika), 6(1), 50-56.
Santoso, A. K. (2022). ANALISIS SENTIMEN TWITTER BAHASA INDONESIA MENGGUNAKAN PENDEKATAN MACHINE LEARNING. Jurnal Informatika Kaputama (JIK), 6(2), 129-136.
Pratama, Y., Murdiansyah, D. T., & Lhaksmana, K. M. (2023). Analisis Sentimen Kendaraan Listrik Pada Media Sosial Twitter Menggunakan Algoritma Logistic Regression dan Principal Component Analysis. JURNAL MEDIA INFORMATIKA BUDIDARMA, 7(1), 529-535. DOI: http://dx.doi.org/10.30865/mib.v7i1.5575.
Nurhusen, M. R., Indra, J., & Baihaqi, K. A. (2023). Analisis Sentimen Pengguna Twitter Terhadap Kenaikan Harga Bahan Bakar Minyak (BBM) Menggunakan Metode Logistic Regression. JURNAL MEDIA INFORMATIKA BUDIDARMA, 7(1), 276-282.
Rahmawati, C., & Sukmasetya, P. (2022). Sentimen Analisis Opini Masyarakat Terhadap Kebijakan Kominfo atas Pemblokiran Situs non-PSE pada Media Sosial Twitter. JURIKOM (Jurnal Riset Komputer), 9(5), 1393-1400. DOI: http://dx.doi.org/10.30865/jurikom.v9i5.4950.
Lestandy, M., Abdurrahim, A., & Syafa’ah, L. (2021). Analisis Sentimen Tweet Vaksin COVID-19 Menggunakan Recurrent Neural Network dan Naïve Bayes. Jurnal RESTI (Rekayasa Sistem Dan Teknologi Informasi), 5(4), 802-808. DOI: https://doi.org/10.29207/resti.v5i4.3308.
Astuti, W. (2022). ANALYSIS SENTIMENT ON THE ACCEPTANCE OF CPNS 2021 ON TWITTER SOCIAL MEDIA USING TEXTBLOB. Jurnal Techno Nusa Mandiri, 19(1), 15-20.
Kelvin, K., Banjarnahor, J., Nababan, M. N., & Sinurat, S. H. (2022). Analisis perbandingan sentimen Corona Virus Disease-2019 (Covid19) pada Twitter Menggunakan Metode Logistic Regression Dan Support Vector Machine (SVM). Jurnal Sistem Informasi dan Ilmu Komputer Prima (JUSIKOM PRIMA), 5(2), 47-52. DOI: https://doi.org/10.34012/jurnalsisteminformasidanilmukomputer.v5i2.2365.
Lengkong, N. C., Safitri, O., Machsus, S., Putra, Y. R., Syahadati, A., & Nooraeni, R. (2021). Analisis Sentimen Penerapan Psbb Di Dki Jakarta Dan Dampaknya Terhadap Pergerakan Ihsg. Jurnal Teknoinfo, 15(1), 20-25.
Onantya, I. D., Indriati, I., & Adikara, P. P. (2019). Analisis Sentimen Pada Ulasan Aplikasi BCA Mobile Menggunakan BM25 Dan Improved K-Nearest Neighbor. Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer, 3(3), 2575-2580.
Herdiana, Y., Rusdianto, D., & Geraldine, W. A. (2023). APLIKASI CV MATCHER UNTUK MELIHAT KECOCOKAN DAFTAR RIWAYAT HIDUP DENGAN LOWONGAN PEKERJAAN MENGGUNAKAN MACHINE LEARNING DAN METODE COSINE SIMILARITY BERBASIS WEB. COMPUTING| Jurnal Informatika, 10(01), 26-30.
Anam, S., Yanti, I., Fitriah, Z., & Habibah, U. (2021). Cara Mudah Belajar Bahasa Pemrograman C++. Universitas Brawijaya Press.