Klasifikasi Absensi Face Geo-Location Menggunakan Metode CNN pada PT Indomarco Prismatama
Main Article Content
Abstract
Article Summary
The rapid development of information technology forces companies to continue to improve operational efficiency, including in managing employee attendance. An accurate and efficient attendance system is essential to monitor employee attendance and ensure operational effectiveness. However, traditional attendance using fingerprints still has weaknesses, such as the potential for data manipulation through NIK input without physical presence. This study aims to develop a facial recognition-based attendance system using the Convolutional Neural Network (CNN) method that can ensure employee attendance in real-time. This technology is expected to improve the accuracy and reliability of the attendance system, as well as reduce the potential for fraud. The implementation of this system at PT Indomarco Prismatama, known as the Indomaret retail network, aims to simplify the attendance process for field employees and make it easier for management to monitor employee attendance in various locations.
Keywords
Article Keywords
Downloads
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License (CC-BY 4.0) that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.
Aldiani, D., Dwilestari, G., Susana, H., Hamonangan, R., & Pratama, D. (2024). Implementasi Algoritma CNN dalam Sistem Absensi Berbasis Pengenalan Wajah. Jurnal Informatika Polinema, 10(2), 197-202. https://doi.org/10.33795/jip.v10i2.4852.
Apriadi, P., & Sutrisna, E. (2023). Perancangan Aplikasi Absensi Karyawan Berbasis Mobile Menggunakan GPS (Studi Kasus PT. Trans Retail Indonesia). Journal Automation Computer Information System, 3(1), 1-9. https://doi.org/10.47134/jacis.v3i1.54.
Apriadi, P., & Sutrisna, E. (2023). Perancangan Aplikasi Absensi Karyawan Berbasis Mobile Menggunakan GPS (Studi Kasus PT. Trans Retail Indonesia). Journal Automation Computer Information System, 3(1), 1-9. https://doi.org/10.47134/jacis.v3i1.54.
Arjun, A. (2024). Klasifikasi Citra Pada Tingkat Kematangan Buah Pisang Menggunakan Algoritma Deep Learning. Jurnal Ekonomi Manajemen Sistem Informasi, 5(3), 203-208. https://doi.org/10.31933/jemsi.v5i3.1786.
Arugia, A. W., Junirianto, E., & Maria, E. Design and Build Web and API on βAbsenplusβ with Face Recognition using Deep Learning Method. Tepian, 3(2), 65-75.
Denata, I., Rismawan, T., & Ruslianto, I. (2021). Implementation of Deep Learning for Classification Type of Orange Using The Method Convolutional Neural Network. Telematika: Jurnal Informatika dan Teknologi Informasi, 18(3), 297-307. https://doi.org/10.31315/telematika.v18i3.5541.
Firmansyah, A., Itsnan, A. F., Apip, A., Mullia, R. T., & Rosyani, P. (2024). SISTEM ABSENSI MAHASISWA MENGGUNAKAN FACE RECOGNITION DENGAN ALGORITMA CNN. AI dan SPK: Jurnal Artificial Intelligent dan Sistem Penunjang Keputusan, 1(4).
Fitri, I., Asmar, M. R., & Rabhasy, A. (2020). DATA CLUSTER MAPPING OF GLOBAL COVID-19 PANDEMIC BASED ON GEO-LOCATION: DATA CLUSTER MAPPING OF GLOBAL COVID-19 PANDEMIC BASED ON GEO-LOCATION. Jurnal Mantik, 4(1), 511-520.
Irawan, N. A., & Kadafi, A. R. (2023). Perancangan Sistem Informasi Presensi Online Karyawan Berbasis Website dengan Face Record dan Geo Location. Bulletin of Computer Science Research, 3(6), 413-419. https://doi.org/10.47065/bulletincsr.v3i6.294.
Isputrawan, M. F., & Suriyanti, S. (2023). Pengembangan Aplikasi absensi berbasis web menggunakan face recognition. Jurnal Teknoinfo, 17(1), 55-65. https://doi.org/10.33365/jti.v17i1.2243.
Khadapi, M., Noviriandini, A., Andarsyah, R., Kurniawati, K., & Lestari, S. (2021). PENGEMBANGAN APLIKASI ABSENSI FACE RECOGNATION MENGGUNAKAN OPENCV LIBRARY DAN ALGORITMA SIFT. Jurnal Informatika Kaputama (JIK), 5(2), 348-355.
Kuswanto, H., Wijonarko, B., & Cahyo, H. D. (2021). Aplikasi Absensi Menggunakan Location Base Services Berbasis Mobile. CONTEN: Computer and Network Technology, 1(1), 31-40. https://orcid.org/0000-0003-0189-6059.
Nawawi, M., Irawan, R. H., & Mahdiyah, U. (2023). Sistem Absensi Berbasis Face Recognition di SMA Queen Al-Falah. Jurnal Nusantara Of Engineering, 6(02), 151-158.
Putra, K. B. V., Bayupati, I. P. A., & Arsa, D. M. S. (2021). Klasifikasi Citra Daging Menggunakan Deep Learning dengan Optimisasi Hard Voting. Jurnal RESTI (Rekayasa Sistem Dan Teknologi Informasi), 5(4), 656-662.
Radikto, R., Mulyana, D. I., Rofik, M. A., & Zakaria, M. O. Z. (2022). Klasifikasi Kendaraan pada Jalan Raya menggunakan Algoritma Convolutional Neural Network (CNN). Jurnal Pendidikan Tambusai, 6(1), 1668-1679. https://doi.org/10.31004/jptam.v6i1.3179.
Rahayu, R. E. G., & Pujaeri, Z. K. (2020). Rancang Bangun Sistem Informasi Absensi Fingerprint, Agenda, Mading Digital di SMK Wikrama 1 Garut Berbasis Web. Jurnal Algoritma, 17(2), 561-568.
Rosalina, R., & Wijaya, A. (2020). Pendeteksian Penyakit pada Daun Cabai dengan Menggunakan Metode Deep Learning. Jurnal Teknik Informatika dan Sistem Informasi, 6(3). https://doi.org/10.28932/jutisi.v6i3.2857.
Sari, K. (2022). Perancangan Sistem Absensi Facial Recognition Menggunakan CNN dan Liveness Detector pada BPR Central Dana Mandiri. Jurnal Informatika Dan Rekayasa Komputer (JAKAKOM), 2(1), 70-80. https://doi.org/10.33998/jakakom.2022.2.1.63.
Siami, M. I., & Hamid, M. (2022). Penerapan Deteksi Penggunaan Masker pada Sistem Absensi Karyawan menggunakan Metode Deep Learning. JAMI: Jurnal Ahli Muda Indonesia, 3(2), 141-148. https://doi.org/10.46510/jami.v3i2.118.