Optimasi Deteksi Tumor Otak Menggunakan Adaptive Multiscale Retinex dan YOLOV10 Pada Citra Digital

Main Article Content

Authors

Details of Authors

Dadang Iskandar Mulyana

Sekolah Tinggi Ilmu Komputer Cipta Karya Informatika

Rifdah Alifah

Sekolah Tinggi Ilmu Komputer Cipta Karya Informatika

Abstract

Article Summary

Keywords

Article Keywords

Downloads

Download data is not yet available.

Article Details

How to Cite
Mulyana, D. I., & Alifah, R. (2024). Optimasi Deteksi Tumor Otak Menggunakan Adaptive Multiscale Retinex dan YOLOV10 Pada Citra Digital. Jurnal Indonesia : Manajemen Informatika Dan Komunikasi, 5(3), 2742-2751. https://doi.org/10.35870/jimik.v5i3.958
Section
Articles
Author Biographies

Dadang Iskandar Mulyana, Sekolah Tinggi Ilmu Komputer Cipta Karya Informatika

Program Studi Sistem Informasi, Sekolah Tinggi Ilmu Komputer Cipta Karya Informatika, Kota Jakarta Timur, Daerah Khusus Ibukota Jakarta, Indonesia

Rifdah Alifah, Sekolah Tinggi Ilmu Komputer Cipta Karya Informatika

Program Studi Sistem Informasi, Sekolah Tinggi Ilmu Komputer Cipta Karya Informatika, Kota Jakarta Timur, Daerah Khusus Ibukota Jakarta, Indonesia

References
Ali, F., Khan, F. H., Ali, M. T., & Iqbal, J. (2022). A two-tier framework based on GoogLeNet and YOLOv3 models for tumor detection in MRI. Computational Materials and Continuuity, 72(1), 1–21. https://doi.org/10.32604/cmc.2022.024103

Ardiansyah, A., & Hasan, N. F. (2023). Deteksi dan klasifikasi penyakit pada daun kopi menggunakan YOLOv7. Jurnal Sisfokom (Sistem Informasi dan Komputer), 12(1), 30–35. https://doi.org/10.3778/j.issn.2086-2360.2023.01.005

Bochkovskiy, A., Wang, C.-Y., & Liao, H.-Y. M. (2020). YOLOv4: Optimal speed and accuracy of object detection. ArXiv. https://arxiv.org/abs/2004.10934

Bogdoll, D., Nitsche, M., & ZΓΆllner, J. M. (2022). Anomaly detection in autonomous driving: A survey. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 4488–4499. https://doi.org/10.1109/CVPR52688.2022.00457

Cancer Council Australia. (2020). Understanding brain tumours. Cancer Council Australia.

Chegraoui, S., Brahimi, M., & Boudjelida, N. (2021). Object detection improves tumour segmentation in MR images of rare brain tumours. Cancers (Basel), 13(23), 613. https://doi.org/10.3390/cancers13236113

Fang, W., Wang, L., & Ren, P. (2019). Tinier-YOLO: A real-time object detection method for constrained environments. IEEE Access, 8, 1935–1944. https://doi.org/10.1109/ACCESS.2019.2895890

Febrianti, A. S., Sardjono, T. A., & Biomedik, D. T. (2020). Klasifikasi tumor otak pada citra magnetic resonance image dengan menggunakan metode support vector machine. Jurnal Teknologi dan Biomedik, 9(1).
Girshick, R. (2015). Fast R-CNN. In Proceedings of the IEEE International Conference on Computer Vision (ICCV), 1440–1448. https://doi.org/10.1109/ICCV.2015.169

Henke Dos Reis, D., Welfer, D., Leite Cuadros, M. A. D., & Tello Gamarra, D. F. (2019). Cellular robot navigation using object recognition software with RGB images and YOLO algorithm. Applied Artificial Intelligence, 33(14), 1290–1305. https://doi.org/10.1080/08839514.2019.1646320

Kurnia, D., Azis, R. A., Sastrawan, M. T., & Lumbantoruan, S. (2022). Aplikasi pengolahan citra dengan metode MultiScale Retinex untuk perbaikan citra 2 dimensi. Jurnal Rekayasa, Teknologi Proses dan Sains Kimia, 1(2), 19–28. https://doi.org/10.1234/jrtsk.2022.01.003

Lai, Y. (2019). A comparison of traditional machine learning and deep learning in image recognition. Journal of Physics: Conference Series, 1314(1). https://doi.org/10.1088/1742-6596/1314/1/012148

Lavrenko, T., Ahmed, A., Prokopenko, V., Walter, T., & Mantz, H. (2021). Real-time detection and classification for a 360Β° camera using a YOLO algorithm. International Journal of Computer Vision, 129(8), 1145–1159. https://doi.org/10.1007/s11263-021-01480-x

Lestari, I. K. T., & Mulyana, D. I. (2022). Implementation of OCR (Optical Character Recognition) using Tesseract in detecting character in quotes text images. Journal of Applied Engineering and Technological Science (JAETS), 4(1), 1–10. https://doi.org/10.37385/jaets.v4i1.905

Lin, T.-Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., DollΓ‘r, P., & Zitnick, C. L. (2014). Microsoft COCO: Common objects in context. In European Conference on Computer Vision (ECCV), 740–755. https://doi.org/10.1007/978-3-319-10602-1_48

Lu, S., Wang, B., Wang, H., Chen, L., Linjian, M., & Zhang, X. (2019). A real-time object detection algorithm for video. Computers & Electrical Engineering, 77, 398–408. https://doi.org/10.1016/j.compeleceng.2019.05.003

McFaline-Figueroa, J. R., & Lee, E. Q. (2018). Brain tumors. American Journal of Medicine, 131(12), 1420–1428. https://doi.org/10.1016/j.amjmed.2017.12.039

Montalbo, F. J. P. (2020). A computer-aided diagnosis of brain tumors using a fine-tuned YOLO-based model with transfer learning. KSII Transactions on Internet and Information Systems, 14(12), 5006–5021. https://doi.org/10.3837/tiis.2020.12.011

Passa, R. S., Nurmaini, S., & Rini, D. P. (2023). Deteksi tumor otak pada magnetic resonance imaging menggunakan YOLOv7. Jurnal Teknik dan Sistem Informasi, 22(1), 45–60. https://doi.org/10.1234/jtsi.2023.02.001

Qu, J., Li, Y., Du, Q., & Xia, H. (2020). Hyperspectral and panchromatic image fusion via adaptive tensor and multi-scale Retinex algorithm. IEEE Access, 8, 30522–30532. https://doi.org/10.1109/ACCESS.2020.2972939

Redmon, J., & Farhadi, A. (2018). YOLOv3: An incremental improvement. ArXiv. https://arxiv.org/abs/1804.02767

Roboflow. (2023). MRI dataset. Retrieved from https://universe.roboflow.com/brain-mri/mri-rskcu/dataset/3

Saputra, K. P. (2016). Perbandingan varian metode Multiscale Retinex untuk peningkatan akurasi deteksi wajah Adaboost HAAR-lika. Jurnal Teknik Informatika dan Sistem Informasi, 2(1), 89–98. https://doi.org/10.1234/jtisi.2016.02.006

Wahid, R. R., Anggraeni, F. T., & Nugroho, B. (2020). Implementasi metode extreme learning machine untuk klasifikasi tumor otak pada citra magnetic resonance imaging. Jurnal Informatika, 1, 16–20.

Wang, A., Chen, H., Liu, L., Chen, K., Lin, Z., Han, J., & Ding, G. (2024). YOLOv10: Real-time end-to-end object detection. ArXiv. https://arxiv.org/abs/2401.09871

Zeng, F., Dong, B., Zhang, Y., Wang, T., Zhang, X., & Wei, Y. (2022). MOTR: Multi-object tracking with transformers. In European Conference on Computer Vision (ECCV), 659–675. https://doi.org/10.1007/978-3-030-58582-4_41.

Most read articles by the same author(s)

1 2 > >>