Klasifikasi Tinggi Badan Manusia Menggunakan Metode Mask R-CNN
Main Article Content
Abstract
Article Summary
The rapid development of the era, of course, becomes a benchmark for an agency to carry out transformation in the field of technology. an agency is expected to be able to implement a system that can provide convenience for many people who are struggling in the field, researchers take the example of a football academic institution. of course the selection to enter the football academic through complicated stages, prospective participants or students must be able to meet various requirements, one of which is height measurement. currently, the selection of height for prospective students is still carried out conventionally by utilizing measuring instruments. this is also the background to this research, in its implementation the researcher used python with the Mask-RCNN method, the conclusion obtained the system is able to detect objects with an accuracy of up to 80%.
Keywords
Article Keywords
Downloads
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License (CC-BY 4.0) that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.
Ciaparrone, G., Bardozzo, F., Priscoli, M. D., Kallewaard, J. L., Zuluaga, M. R., & Tagliaferri, R. (2020, July). A comparative analysis of multi-backbone Mask R-CNN for surgical tools detection. In 2020 International Joint Conference on Neural Networks (IJCNN) (pp. 1-8). IEEE.
Dari, S. W., & Triloka, J. (2022, August). Kajian Algoritme Mask Region-Based Convolutional Neural Network (Mask R-CNN) dan You Look Only Once (YOLO) Untuk Deteksi Penyakit Kulit Akibat Infeksi Jamur. In Prosiding Seminar Nasional Darmajaya (Vol. 1, pp. 132-138).
Fajri, F. N., Pratamasunu, G. Q. O., & Aprilingga, D. A. Deteksi Wanita Berhijab dan tidak Berhijab dengan menggunakan Metode Mask RCNN. JEPIN (Jurnal Edukasi dan Penelitian Informatika), 8(3), 579-585.
Fajri, F. N., Syaiful, S., & Priambodo, W. G. (2024). Fire and Smoke Object Detection Using Mask R-CNN. Journal of Advanced Research in Informatics, 2(2), 1-7. https://doi.org/10.24929/jars.v2i2.3099.
Ganesh, P., Volle, K., Burks, T. F., & Mehta, S. S. (2019). Deep orange: Mask R-CNN based orange detection and segmentation. Ifac-papersonline, 52(30), 70-75. https://doi.org/10.1016/j.ifacol.2019.12.499.
Hartati, E. (2024). KLASIFIKASI PENYAKIT MATA MENGGUNAKAN CONVOLUTIONAL NEURAL NETWORK MODEL RESNET-50. Jurnal Rekayasa Sistem Informasi dan Teknologi, 1(3), 199-206. https://doi.org/10.59407/jrsit.v1i3.529.
Mulyana, D. I., Sufriman, A., & Yel, M. B. (2023). Implementasi Deteksi Emosional Pada Wajah Menggunakan Deep Learning-Yolov5. JUTECH: Journal Education and Technology, 4(1), 12-22. https://doi.org/10.31932/jutech.v4i1.2174.
Qotrunnada, F. M., & Utomo, P. H. (2022, February). Metode Convolutional Neural Network untuk Klasifikasi Wajah Bermasker. In PRISMA, Prosiding Seminar Nasional Matematika (Vol. 5, pp. 799-807).
Rahdatul’Aisy, N., Putri, S. A., Purba, R. C. B., Ikhwal, M., Erbila, R. J., & Rosyani, P. (2023). Deteksi Crack Dan Studi Perbandingan Berdasarkan Faster R-CNN Dan Mask R-CNN. BINER: Jurnal Ilmu Komputer, Teknik dan Multimedia, 1(3), 526-534.
Solihin, A., Mulyana, D. I., & Yel, M. B. (2022). Klasifikasi jenis alat musik tradisional Papua menggunakan metode transfer learning dan data augmentasi. Jurnal SISKOM-KB (Sistem Komputer Dan Kecerdasan Buatan), 5(2), 36-44.
Tyas, D. A., & Ratnaningsih, T. (2023). IMPLEMENTASI MASK-RCNN PADA DATASET KECIL CITRA SEL DARAH MERAH BERDASARKAN KRITERIA WARNA SEL. Rabit: Jurnal Teknologi dan Sistem Informasi Univrab, 8(1), 100-104.
Wicaksono, A., Purnomo, M. H., & Yuniarno, E. M. (2021). Deteksi Pejalan Kaki pada Zebra Cross untuk Peringatan Dini Pengendara Mobil Menggunakan Mask R-CNN. Jurnal Teknik ITS, 10(2), A497-A503.
Wona, M. M. A., Asyifa, S. A., Virgianti, R., Hamid, M. N., Handoko, I. M., Septiani, N. W. P., & Lestari, M. (2023). Klasifikasi Batik Indonesia Menggunakan Convolutional Neural Network (CNN). Jurnal Rekayasa Teknologi Informasi (JURTI), 7(2), 172-179.