PENERAPAN METODE NEURAL NETWORK DENGAN STRUKTUR BACKPROPAGATION UNTUK MEMPREDIKSI KEBUTUHAN STOK PADA TOKO UMKM PERLENGKAPAN BAYI BABYQU
Main Article Content
Abstract
Article Summary
At this time Machine Learning especially Deep Learning is developing very quickly in any field, especially in the fields of business, transactions, stock predictions, sales, and stocks and the like. Machine Learning has become a mainstay for facilitating and helping work. At the BabyQu store, the decisions used to carry out stock inventory still use the manual method, and there are several problems that arise including the occurrence of excess stock which makes other storage areas used for excess stock, especially if there are products that have an expiration date, and if there is a shortage of stock, problems will occur that will make consumers who need products or goods go to other places and several other problems that will arise which will cause losses to BabyQu stores, it is necessary to create a system or software that aims to assist BabyQu stores in forecasting stock availability product to overcomesome of these problems. This research was made using the Artificial Neural Network (ANN) model design and method using Backpropagation as the algorithm because this algorithm can reduce the percentage of errors. The results we got in this study using the 3-3-1 model obtained an accuracy rate of 85.72%, using 550 iterations of epochs, and taking approximately 11.1 seconds.
Downloads
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
References
S. Ningsih, A. Itb, and J. Dahlan, “PENERAPAN ALGORITMA BACKPROPAGATION UNTUK MEMPREDIKSI JUMLAH PERMINTAAN BUKU DAN ALAT TULIS,” vol. 3, no. 1, pp. 1–10.
P. JARINGAN SYARAF TIRUAN UNTUK MERAMALKAN PERMINTAAN PADA PERUSAHAAN RETAIL Marjiyono, B. W. Soedijono, and E. Taufiq Luthfi, “Seminar Nasional Teknologi Informasi dan Multimedia,” Univ. AMIKOM Yogyakarta, 2018.
E. Elisawati, A. Linarta, A. M. I. Putra, and H. Elvaningsih, “Analysis of Backpropagation Method in Predicting Drug Stock,” SinkrOn, vol. 7, no. 2, pp. 297–307, Feb. 2022, doi: 10.33395/sinkron.v7i2.11269.
L. Kinsy Suwardi, “Analisa dan Perancangan Aplikasi Data mining Untuk Prediksi Stok Obat pada Klinik XYZ.”
A. Perdana Windarto et al., “MODEL ARSITEKTUR NEURAL NETWORK DENGAN BACKPROPOGATION PADA PREDIKSI TOTAL LABA RUGI KOMPREHENSIF BANK UMUM KONVENSIONAL,” Kumpul. J. Ilmu Komput., vol. 05, no. 02, 2018, [Online]. Available: www.ojk.go.id
N. P. Sakinah, I. Cholissodin, and A. W. Widodo, “Prediksi Jumlah Permintaan Koran Menggunakan Metode Jaringan Syaraf Tiruan Backpropagation,” 2018. [Online]. Available: http://j-ptiik.ub.ac.id
K. Hati, “Adaptive Neuro Fuzzy Inference System (ANFIS) untuk Estimasi Persediaan Stok Produk Herbal HPAI”.
F. Khairati and H. Putra, “Prediksi Kuantitas Penggunaan Obat pada Layanan Kesehatan Menggunakan Algoritma Backpropagation Neural Network,” J. Sistim Inf. dan Teknol., pp. 128–135, Aug. 2022, doi: 10.37034/jsisfotek.v4i3.158.
A. W. Putri, “Tahun 2021 IMPLEMENTASI ARTIFICIAL NEURAL NETWORK (ANN) BACKPROPAGATION UNTUK KLASIFIKASI JENIS PENYAKIT PADA DAUN TANAMAN TOMAT”.
H. Putra and N. Ulfa Walmi, “Penerapan Prediksi Produksi Padi Menggunakan Artificial Neural Network Algoritma Backpropagation,” J. Nas. Teknol. dan Sist. Inf., vol. 6, no. 2, pp. 100–107, Sep. 2020, doi: 10.25077/teknosi.v6i2.2020.100-107.
T. Hastono, “Desain Aplikasi Prediksi Kebutuhan Buah Durian Pelanggan Menggunakan Neural Network.”
N. Tampati, Y. Melita Pranoto, T. Informasi, and I. Sains dan Teknologi Terpadu Surabaya Jl Ngagel Jaya Tengah No, “Prediksi Stok Obat pada Apotik Total Life Clinic Menggunakan Model Kombinasi Artificial Neural Network dan ARIMA”, [Online]. Available: http://jurnal.mdp.ac.id
Norhikmah and Rumini, “KLASIFIKASI PEMINJAMAN BUKU MENGGUNAKAN NEURAL NETWORK BACKPROPAGATION,” J. Sist. Inf., vol. 9, no. 1, pp. 1–15, 2020.
A. Cahyo Saputro, “ANALISIS PEMANFAATAN BACKPROPAGATION DAN METODE FUZZY TSUKAMOTO UNTUK MENENTUKAN PREDIKSI PENJUALAN DAN STOK YANG HARUS TERSEDIA,” Indones. J. Appl. Informatics, vol. 1, no. 2, 2017.
H. Elvaningsih and F. Tawakal, Seminar Nasional Sains dan Teknologi Informasi (SENSASI) Prediksi Stok Obat Menggunakan Metode Backpropagation (Studi Kasus: Puskesmas Dumai Barat). [Online]. Available: http://prosiding.seminar-id.com/index.php/sensasi/issue/archivePage%7C228
M. Thoriq, “Peramalan Jumlah Permintaan Produksi Menggunakan Jaringan Saraf Tiruan Algoritma Backpropagation,” J. Inf. dan Teknol., pp. 27–32, Feb. 2022, doi: 10.37034/jidt.v4i1.178.
J. R. Sidauruk, “IMPLEMENTASI JARINGAN SYARAF TIRUAN UNTUK MEMPREDIKSI MEREK KOSMETIK YANG PALING DIMINATI KONSUMEN MENGGUNAKAN METODE BACKPROPOGATION,” 2017.
B. Asward and G. Brotosaputro, “Analisis Stok dan Penjualan Kaftan Menggunakan Metode Backpropagation (Studi Kasus Lala New Fashion)”.
M. Yanto, E. Praja Wiyata Mandala, and D. Eka Putri, “Peramalan Penjualan Pada Toko Retail Menggunakan Algoritma Backpropagation Neural Network,” vol. 2, no. 3, 2018.
M. Yulfikar, U. Yudatama, and E. U. Artha, “PREDIKSI KETERSEDIAAN STOK KAYU DENGAN METODE BACKPROPOGATION DAN JARINGAN KOHONEN (Studi Kasus Ud. Wahyu Nugroho Grabag Magelang),” 2019.
A. Wanto and A. P. Windarto, “Analisis Prediksi Indeks Harga Konsumen Berdasarkan Kelompok Kesehatan Dengan Menggunakan Metode Backpropagation,” J. Penelit. Tek. Inform., vol. 2, no. 2, 2017.